numpy中np.sum(y == t)的理解

今天在学习神经网络时,发现了这样的一行代码:

accuracy = np.sum(y == t) / float(x.shape[0])

并不是很理解np.sum(y == t)的含义,因此特别学习了一下。

下面是示例:

b = []
arr = np.random.randint(1,5,[4,5])
for i in range(arr.shape[0]):
    b.append(np.sum(1 == aerr[i]))

 结果是:

arr:
[[4 2 3 2 1]
[2 4 3 2 2]
[4 3 2 4 2]
[2 2 1 1 2]]

b:
[1, 0, 0, 2]

也就是说对于text这个4行5列的二维矩阵来说,np.sum(1 == arr[i])中的 “==” 比较的是对于arr其中第i行的数据中的每一个元素来和“1”比较是否相同,如果一样就是1,不同就是0,然后将这一行所有得出的结果相加猜得到最终结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值