扫地机器人:ROS-GAZEBO仿真系统与全覆盖规划算法

目录

引言

ROS-GAZEBO仿真系统概述

 系统架构

地图预处理

全覆盖规划算法

局部规划算法

全局规划算法

决策

最终效果


引言

自己对于扫地机器人一直很感兴趣,也挺想去扫地机器人公司搬砖,奈何自己太菜了没人要,也一直想拥有一款自己的扫地机器人,奈何钱包干瘪,于是我开始着手搭建了一套强大的扫地机器人仿真系统,利用ROS-GAZEBO仿真环境,结合我自己编写的全覆盖规划算法和局部规划算法,成功实现了智能、高效的地图扫描与清理功能。本博客将详细介绍我的系统架构和关键技术

ROS-GAZEBO仿真系统概述

在实现自己的实物之前,我觉得应该把仿真系统先搭建好,上层算法都测试的差不多了,在着手设计机器人硬件, 这个仿真系统,我采用的是基于ros-gazebo, 自己手撸了一个urdf模型,当然你觉得困难你也可以现有的turtlebot,反正都是差速机器人。搭建好urdf后,为了让机器人好看点,我把身体和轮子的Visual标签部分替换成真实的扫地机模型(网上搜的),如下图

 系统架构

系统的架构参考的是ros的movebase结构图

地图预处理

 我自己也没有用过扫地机器人,只能根据自己的一些基本需求来去设计算法, 首先应该要有一个家!(真实的家我也买不起,只能在gazebo上自己搭建一个了- -), 其次是可以根据环境进行建图, 这里我直接用的是gmapping功能包, 并且因为目前只是专注于实现整体的框架和算法,我把雷达传感器的误差设置的很小,所以建图效果就看起来不错。因为自己写的全覆盖算法是基于多边形的,所以这里还需要对栅格地图进行预处理,把边界和里面的多边形障碍物给提取出来并转换成多边形点集, 这个预处理部分直接用的是Opencv的开源算法,整体流程是:

1. 读取一个栅格地图,二值化,  去除噪声(我的地图噪声点比较少), 对地图进行按照机器尺寸进行膨胀

2. 对地图进行开运算,闭运算,把连接比较近的障碍物,或者一些噪声点给去除掉

3. 用opencv的findContours找到所有的多边形轮廓

4. 把面积最大的作为外边界,其他的都是障碍物

这里随便贴一些预处理提取轮廓的效果图,效果一般般,但可以提取出来(- -)

 

 

全覆盖规划算法

 全覆盖规划算法是我系统的主要核心算法之一(只会这个),它使扫地机器人能够高效地清扫整个地图。这个部分的算法可以借鉴我的另外一篇博客,讲述的是室外机器人拖拉机的作业全覆盖,个人觉得扫地机,割草机,拖拉机的全覆盖算法其实都是差不多的,用的同一套核心算法,唯一不同的是掉头区域的处理,还有就是一些细枝末节,比如不可以重复走,不可以倒车,不可踩线之类,其他的不能出界,以及不能发生碰撞是一样的。这个部分算法主要逻辑如下

1. 对多边形分块,这里采用的方法是Cell decomposition,原理就是用一条自下而上的直线段,根据线段和多边形的交点数量变化来触发分块的逻辑, 这个分块方法取决于驾驶方向,目前是自己手动随机选择一个方向(- -有点蠢)

2. 分好块以后,每一个块会有进口和出口,把每一个字块的进和出口做成一张节点图,每一个节点之间的cost可以根据自己的需求计算,最简单就是欧氏距离, 把cost matrix计算好了以后可以用蚁群算法来求解最优的顺序, 这里也可以采用一些开源的tsp算法。

3. 提取蚁群算法的结果,恢复出所有的路线

话不多说,贴效果图

局部规划算法dwa源码icon-default.png?t=N7T8https://github.com/Youhaochan/dwa-algorithm

路径都有了,当然少不了路径跟踪了是吧,室内扫地机器人或者清洁机器人的局部规划算法应该都是借鉴于ros的dwa算法或者teb算法吧,都有先成的,但是我本人对dwa算法比较了解,我不太了解ros的navigation功能包,不想去学习如何单独适用ros的dwa功能包,我就自己用c++手撸了一个dwa算法, 先撸一个cmake的版本,不依赖于ros的,方便调试,画图用的是matplotcpp, 其中障碍物搜索方面我特地去学习了kd_tree的用法(虽然我的障碍物就几十个,brute search也不影响速度)。这部分也少不了效果图!!

全局规划算法

扫地机器人可能在工作过程,或者在充电桩充电的时候,主人给他发一个指令,让他去定点干活,这个时候就需要根据已有的栅格地图规划处一条点到点的路径了,这部分我使用的是A星算法,这个算法已经非常成熟了,网络上也有很多图和先成算法,不过这部分我还是决定自己手撸,不然总觉得只是局限于理论,而不知道实现细节。

决策

扫地机要能正常工作,肯定少不了一个大脑,也就是决策部分,就像之前说的,我没有从事过相关工作,也没使用过扫地机,因此我就有点头疼该如何写这个决策部分的代码。 这个时候产品经理还是很重要的哈哈哈,我没有自己的产品经理,所以我选择去问chatgpt。gpt给的要求实在是太多了,我只能做到其中一两个,普通的机器人决策部分应该大多数是基于有限状态机来做决策的,也就是根据当前的状态,环境,结合指令做出相应的动作,都是程序员事先写好的逻辑。为了减少工作量,这部分我仅仅实现了,开始清洁,回充,检测电量,停止工作这几个状态。

最终效果

这里直接贴视频了


后续有优化在继续更新!

<think>嗯,用户想了解Gazebo扫地机器人的仿真或开发,特别是结合ROS的部分。首先,我需要回忆一下GazeboROS机器人仿真中的角色。Gazebo是一个强大的3D物理仿真环境,常用于机器人测试,而ROS(Robot Operating System)则是机器人开发的框架,提供通信和工具支持。两者结合可以模拟真实环境中的机器人行为,比如扫地机器人。 用户提供的引用中,引用[1]提到使用ROS-GAZEBO搭建仿真系统,结合覆盖规划算法,这可能涉及路径规划和环境建模。引用[2]提到iRobot的仿真模型,但缺少某些传感器,这可能意味着用户需要补充传感器配置。引用[3]则是一个作业,要求用ROS节点控制TurtleBot实现类似Roomba的算法,比如遇到障碍物转向。这些信息可以帮助构建回答的结构。 接下来,我应该分步骤解释开发流程。首先是环境搭建,需要安装ROSGazebo,可能推荐使用Ubuntu系统,因为ROS对Ubuntu支持最好。然后是机器人建模,使用URDF或xacro文件,添加传感器如激光雷达、碰撞传感器等,引用[2]提到cliff和bumper传感器缺失,可能需要用户自行添加。 接着是运动控制,需要编写ROS节点发布速度指令,订阅传感器数据。引用[3]中的wander_bot示例,可以说明基本的避障逻辑。然后是路径规划,包括全局规划覆盖算法,和局部避障,引用[1]中的覆盖规划算法是关键部分,可能需要结合SLAM构建地图。 仿真测试部分需要强调Gazebo的物理引擎和传感器模拟,比如测试不同地面情况。最后是部署到实体机器人,涉及驱动和通信配置。 在相关问题上,用户可能想了解GazeboROS的整合优势,例如物理仿真和模块化开发;传感器仿真的挑战,比如真实性和计算开销;覆盖算法的实现,如如何优化路径;还有常见问题如定位误差或通信延迟,引用[1]的系统架构可能提供解决思路。 需要确保回答中的LaTeX格式正确,比如数学公式用$...$,独立公式用$$...$$。例如,提到路径优化时,可以写路径长度公式$L = \sum_{i=1}^n d_i$。同时,引用标记要自然添加在相关段落末尾,比如讨论覆盖算法时引用[^1]。 最后,检查是否有遗漏的关键点,比如工具和资源推荐,如ROS的导航包、GitHub上的仿真模型,引用[2]和[3]中的项目可能作为例子。还要确保语言口语化,避免使用专业术语过多,但必要的术语需要解释清楚。</think>### Gazebo扫地机器人仿真开发流程(基于ROS) 一、环境搭建 1. 安装ROSGazebo:推荐使用Ubuntu+ROS Noetic/Melodic版本,通过apt安装`ros-<版本>-gazebo-ros-pkgs` $$ sudo apt-get install ros-noetic-gazebo-ros-pkgs $$ 2. 创建功能包: ```bash catkin_create_pkg sweeper_bot roscpp gazebo_ros sensor_msgs ``` 二、机器人建模 1. 使用URDF/Xacro定义机器人结构: ```xml <link name="base_link"> <collision> <geometry> <cylinder length="0.1" radius="0.2"/> </geometry> </collision> <sensor name="laser" type="ray">...</sensor> </link> ``` 需包含扫地机器人的关键传感器: - 激光雷达(LIDAR):用于SLAM建图 - 碰撞传感器(Bumper):检测障碍物接触[^3] - 悬崖传感器(Cliff):防止跌落[^2] 三、运动控制开发 1. 实现基础运动节点: ```python rospy.Subscriber("/scan", LaserScan, callback) pub = rospy.Publisher('/cmd_vel', Twist, queue_size=10) ``` 采用类似Roomba的"碰撞-转向"算法: $$ \text{前进速度} = \begin{cases} 0.2m/s & \text{最小距离} > 0.5m \\ 0 & \text{否则} \end{cases} $$ 四、路径规划实现 1. 覆盖路径规划(CCPP)关键步骤: - 将环境栅格化为$m \times n$的网格 - 使用螺旋式路径优化清扫路径$L = \sum_{i=1}^n d_i$ - 结合A*算法实现局部避障 五、仿真测试 1. 典型测试场景: ```xml <include file="$(find sweeper_bot)/launch/sweeper_world.launch"> <arg name="world_name" value="apartment_complex"/> </include> ``` 可通过调整摩擦系数$\mu$测试不同地面: $$ \mu \in [0.3,0.7] \text{(瓷砖到地毯)} $$ 六、部署到实体机器人 1. 硬件接口映射: ```yaml sensors: lidar: /dev/ttyUSB0 motors: /dev/ttyACM0 ```
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值