回想PPA应用于包含问题 0 ∈ T ( x ) 0 \in T(x) 0∈T(x)时,每个子问题都需要计算预解算子 J c T = ( I + c T ) − 1 J_{cT} = (I+cT)^{-1} JcT=(I+cT)−1,其中 c > 0 c>0 c>0。对于很多极大单调算子,可能就算预解算子 J c T J_{cT} JcT很困难,所以考虑 T = P + Q T = P+Q T=P+Q,其中P,Q是两个极大单调算子,使得 J c P J_{cP} JcP和 J c Q J_{cQ} JcQ比 J c T J_{cT} JcT更容易计算。该问题可以视为PPA的一种推广,其主要为了解决以下包含问题:
0 ∈ P ( x ) + Q ( x ) 0 \in P(x)+Q(x) 0∈P(x)+Q(x)
其中P和Q是两个给定的最大单调算子,对 ∀ x 0 ∈ d o m
Douglas-Rachford Splitting Method(DRSM)
最新推荐文章于 2024-07-01 13:38:29 发布
