如何真正理解openfoam中控制方程、状态方程、通量评估等概念的联系(blastFoam官方文档介绍)

主要介绍计算流体力学求解器blastFoam的用户指导文件,链接https://www.blastfoam.org/blastFoam_User_Guide.pdf

个人理解:

控制方程:这里只是定义了一个方程,但是里面的参数需要借助具体选择的状态方程和通量评估里面的方法才能知道。

状态方程:补充控制方程中关于压力、密度和温度的关系。

通量评估:涉及到黎曼解算器和时间积分。黎曼解算器用于数值解控制方程,不同的黎曼解算器和时间积分方法实现精确性与稳定性的平衡。时间积分方法决定了如何处理控制方程的时间导数项

1.目录结构

2. Governing Equations(控制方程)

这一部分定义了用于计算模拟的数学模型,通常包括:

  • 守恒方程(质量、动量、能量等)。
  • 边界条件和初始条件。
  • 用于描述流体行为的基础方程。

关系:控制方程是整个工具的理论核心,所有后续计算和方法(如通量评估、时间积分等)都基于这些方程


3. Equation of States(状态方程)

这里提供了不同材料的状态方程,用于描述其热力学性质。具体包括:

  • 理想气体(Ideal Gas)。
  • 广义范德瓦尔斯气体(Generalized Van der Waals Gas)。
  • Tait 方程(描述液体的压缩性)。
  • 强化气体模型(Stiffened Gas)。
  • JWL 模型(Jones Wilkins Lee,常用于爆炸研究)。
    • 激活模型(Activation Model)。
    • Afterburn 模型。
  • Cochran-Chan 模型。

关系状态方程与控制方程密切相关,用于补充控制方程中关于压力、密度和温度的关系。这些模型的选择取决于被模拟材料的物理特性


4. Flux Evaluation(通量评估)

这一部分详细介绍了通量计算的方法,分为以下两个子部分:

  • 4.1 Riemann Solvers(黎曼解算器):包括HLL、HLLC、AUSM+和Tadmor/Kurganov方法,用于计算守恒方程中的数值通量。
  • 4.2 Time Integration(时间积分):包括显式和隐式方法(Euler、RK2、RK3、RK4 等),用来推进时间步。

关系

  1. 通量评估用于数值解控制方程,通过不同的黎曼解算器和时间积分方法实现精确性与稳定性的平衡。
  2. 时间积分方法决定了如何处理控制方程的时间导数项


 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

热爱生活的五柒

谢谢你的打赏,人好心善的朋友!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值