主要介绍计算流体力学求解器blastFoam的用户指导文件,链接https://www.blastfoam.org/blastFoam_User_Guide.pdf
个人理解:
控制方程:这里只是定义了一个方程,但是里面的参数需要借助具体选择的状态方程和通量评估里面的方法才能知道。
状态方程:补充控制方程中关于压力、密度和温度的关系。
通量评估:涉及到黎曼解算器和时间积分。黎曼解算器用于数值解控制方程,不同的黎曼解算器和时间积分方法实现精确性与稳定性的平衡。时间积分方法决定了如何处理控制方程的时间导数项。
1.目录结构
2. Governing Equations(控制方程)
这一部分定义了用于计算模拟的数学模型,通常包括:
- 守恒方程(质量、动量、能量等)。
- 边界条件和初始条件。
- 用于描述流体行为的基础方程。
关系:控制方程是整个工具的理论核心,所有后续计算和方法(如通量评估、时间积分等)都基于这些方程。
3. Equation of States(状态方程)
这里提供了不同材料的状态方程,用于描述其热力学性质。具体包括:
- 理想气体(Ideal Gas)。
- 广义范德瓦尔斯气体(Generalized Van der Waals Gas)。
- Tait 方程(描述液体的压缩性)。
- 强化气体模型(Stiffened Gas)。
- JWL 模型(Jones Wilkins Lee,常用于爆炸研究)。
- 激活模型(Activation Model)。
- Afterburn 模型。
- Cochran-Chan 模型。
关系:状态方程与控制方程密切相关,用于补充控制方程中关于压力、密度和温度的关系。这些模型的选择取决于被模拟材料的物理特性。
4. Flux Evaluation(通量评估)
这一部分详细介绍了通量计算的方法,分为以下两个子部分:
- 4.1 Riemann Solvers(黎曼解算器):包括HLL、HLLC、AUSM+和Tadmor/Kurganov方法,用于计算守恒方程中的数值通量。
- 4.2 Time Integration(时间积分):包括显式和隐式方法(Euler、RK2、RK3、RK4 等),用来推进时间步。
关系:
- 通量评估用于数值解控制方程,通过不同的黎曼解算器和时间积分方法实现精确性与稳定性的平衡。
- 时间积分方法决定了如何处理控制方程的时间导数项。