一文读懂「Attention is All You Need」

本文深入探讨Transformer模型,重点解析Attention机制,包括QKV矩阵、multi-head Attention及位置编码,阐述其在Encoder-Decoder框架中的作用,并提供部分代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 介绍

核心Transformer,下面我们介绍下Transformer

2. 模型架构

Transformer的抽象结构图
在这里插入图片描述
Transformer内部是encoder-decoder框架。

2.1 模型框架

每一个Transformer结构,由6个encoder和decoder构成。最后一个encoder连接到各个decoder
在这里插入图片描述
展开后如下图,其中N=6
在这里插入图片描述
transformer中decoder和encoder的内部网络结构
在这里插入图片描述
Encoder input  X = ( x 1 , x 2 . . . x n ) Decoder output  Y = ( y 1 , y 2 . . . y n ) o u t p u t {\text{Encoder input }} X=(x_{1}, x_{2}...x_{n}) \\ {\text{Decoder output }} Y=(y_{1}, y_{2}...y_{n}) \\ output Encoder input X=(x1,x2...xn)Decoder output Y=(y1,y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值