【QLIB】 GBDT模型输出因子重要性

3 篇文章 0 订阅
2 篇文章 0 订阅

GBDT是有较好解释性的,我们可以通过模型获取到因子的重要程度。修改qlib/contrib/model/gbdt.py。

  1. 增加方法,按照因子重要程度进行排序
    def importance(self, importance, columns):
        df = pd.DataFrame({'feature': columns, 'importance': importance})
        df.sort_values('importance',inplace=True,ascending=False)
        df.reset_index(drop=True,inplace=True)
        print (df)
        print (df.values)

  1. predict环节增加重要程度输出
 self.importance(self.model.feature_importance(), x_test.columns.values)
  1. 训练过程可参考添加。

输出结果如下:

     feature  importance
0      RESI5          54
1      STD30          54
2     RESI10          48
3       STD5          43
4      STD20          42
..       ...         ...
153  VSUMD60           1
154    IMAX5           0
155    CNTP5           0
156   CNTN10           0
157    VWAP0           0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值