【CV论文精读】Pedestrian Detection Based on YOLO Network Model 基于YOLO的行人检测

本文介绍了一种改进的YOLO算法,YOLO-R,通过增加直通层来解决深度网络中行人信息丢失的问题。实验结果显示,YOLO-R在INRIA数据集上提高了检测精度,降低了误报和漏检率,实现实时检测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【CV论文精读】Pedestrian Detection Based on YOLO Network Model

0.论文摘要和作者信息

摘要——经过深度网络后,会有一些行人信息的丢失,会造成梯度的消失,造成行人检测不准确。本文改进了YOLO算法的网络结构,提出了一种新的网络结构YOLO-R。首先,在原有YOLO网络的基础上增加了三个直通层。直通层由路由层和重组层组成。其作用是将浅层行人特征连接到深层行人特征,并链接高分辨率和低分辨率行人特征。路线层的作用是将指定层的行人特征信息传递到当前层,然后使用重组层对特征图进行重组,使当前引入的路线层特征与下一层的特征图相匹配。该算法增加的三个直通层可以很好地将网络的浅行人细粒度特征传递到深层网络,使网络能够更好地学习浅行人特征信息。本文还将原YOLO算法中直通层连接的层数从第16层改为第12层,以增加网络提取浅行人特征信息的能力。改进在INRIA行人数据集上进行了测试。实验结果表明,该方法能有效提高行人的检测精度,同时降低误报率和漏检率,检测速度可达每秒25帧。
索引术语-YOLO网络模型;行人检测;直通层;路由层;重组层。

1.研究背景

行人检测是行人目标信息识别和行人行为分析的基础。行人检测也是后期识别和处理的基础。目前,最经典的行人检测方法是Dalal[1]等人提出的HOG+SVM行人检测,在MIT行人数据集上具有近乎完美的性能。Felzenszwalb等人提出了一种改进的DPM算法[2],DPM算法是一种基于组件的检测方法,对目标的变形具有很强的鲁棒性。多勒等提出了积分通道特征[3]和聚合通道特征[4]来整合梯度直方图、LUV和梯度幅度特征,以获得更好的行人特征性能。随着深度神经网络的发展,深度学习模型也广泛应用于行人检测。深度学习相对于传统的目标检测有很大的优势。传统的方法是人工提取特征,需要相关领域的专家通过多年的积累和经验进行人工设计和处理。深度学习的方法可以通过大量数据学习响应数据中的差异特征,更具代表性。深度学习模型模拟人脑的视觉感知系统。它直接从原始图像中提取特征,并通过这些特征逐层传递,获得图像的高维信息,在计算机视觉领域取得了巨大成功。欧阳[5]等人提出了一种基于分量的检测方法,对目标的变形具有鲁棒性。田[6]等人提出了利用深度学习结合部分模型进行ob用于解决行人检测中的遮挡问题。Anelia[7]等人提出了一种新的实时行人检测方法,利用深度神经网络的准确性和级联分类器的效率进行行人检测,实现高精度。目前优秀的目标检测模型有:R-CNN[8]、SPP-Net[9]、Fast-RCNN[10]、Faster-RCNN[11]、SSD[12]、YOLO[13]和ResNet[14]。
YOLO网络模型在目标的实时检测方面表现出色。因此,YOLO网络模型将用于行人检测,并将改进网络以提高其检测能力。本文的主要改进是在深度网络前面增加了3个直通层,将原有YOLO网络结构中的直通层连接数从第16层改为第12层,形成了新的YOLO-R网络模型。在本实验中,使用INRIA行人检测数据集进行测试。实验表明,改进算法提高了行人检测的准确率,同时降低了漏检率和误检率,检测速度达到25帧/秒。

2.行人检测程序

YOLO网络模型使用目标检测作为空间分离的目标框及其类别置信度的回归问题。单个神经网络可以从整个图像中直接预测目标框和类别的置信度。YOLO网络模型的行人检测过程如图1所示:
在这里插入图片描述

1)首先将图像划分为SxS网格。如果行人在网格中,网格负责检测行人。每个网格预测B个检测框和这些检测框的置信度,每个图片的检测帧数为SxSxB.
2)每个检测框有5个预测值(X,Y,W,H,Conf)。其中X,Y是预测框中心相对于单元边界的偏移量,W和H是预测框宽度与整个图像的比值,Conf表示检测框的置信度。3)每个网格预测行人的条件概率 P r ( c l

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

量子-Alex

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值