【深入理解DETR】DETR的原理与算法实现

本文介绍了DETR算法,一种无需NMS和先验知识的端到端物体检测方法,着重于其基于集合的全局损失和encoder-decoder架构。文章详细描述了训练和测试流程,模型结构以及损失函数的计算方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 DETR算法概述

在这里插入图片描述
在这里插入图片描述
①端到端
②Transformer-model

之前的方法都需要进行NMS操作去掉冗余的bounding box或者手工设计anchor, 这就需要了解先验知识,增加从超参数anchor的数量,

1.1 训练测试框架

一次从图像中预测n个object的类别

在这里插入图片描述

训练阶段我们将一张图像喂入DETR模型,会得到100个bounding box,并且得到这些预测框的类别信息和坐标信息
100个是超参数,因为大部分的图像中的object的数量不会超过100个
通过label我们知道图像中有2个object
然后使用匈牙利算法从预测出的100个候选框中筛选出2个预测框,与两个标注框一起计算损失,然后反向传播,优化模型参数

在这里插入图片描述

测试阶段:通过网络预测出100个预测框,把这100个预测框的置信度去和阈值进行比较,大于阈值的预测框保留。

这样在DETR里面是没有用到anchor也没有NMS操作的

算法的两个重点:一是基于集合的全局损失,通过二分类匹配得到与标注框匹配的独一无二的损失;二是引入encoder-decoder框架,

在这里插入图片描述

object queries是可学习的参数,通过他的尺寸指定输出的预测框的个数,在transforme中输出的token个数是等于输出的token个数,

没有固定的框架:只要框架能够支持这些,就能支持DETR
CNN+位置编码+encoder-decoder+MLP

2 DETR模型结构讲解

inference

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

量子-Alex

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值