【YOLO多光谱目标检测综述】Surveying You Only Look Once (YOLO) Multispectral Object Detection Advancements, Appl
摘要:多光谱成像和深度学习已经成为支持从自动驾驶汽车到农业、基础设施监测和环境评估等各种用例的强大工具。这些技术的结合导致了非可见光光谱中目标检测、分类和分割任务的显著进步。本文共考虑了400篇论文,详细回顾了200篇,以提供多光谱成像技术、深度学习模型及其应用的权威元综述,考虑了YOLO方法的演变和适应。地面收集是最普遍的方法,占审查论文的63%,尽管用于YOLO多光谱应用的无人驾驶航空系统(UAS)自2020年以来翻了一番。最普遍的传感器融合是红-绿-蓝(RGB)与长波红外(LWIR),占文献的39%
原创
2024-09-26 09:37:09 ·
1638 阅读 ·
0 评论