Artifificial Intelligence for Credit Risk Assessment: Artifificial Neural Network
and Support Vector Machines
及到的技术:皮尔斯检验、逐步回归、支持向量机、核函数、ANN。
研究问题:利用AI模型预测突尼斯银行贷款人信用风险的能力,主要是二分类问题。
研究方法:
逻辑回归模型
神经网络
SVM支持向量机
研究结果:SVM中RBF核支持向量机对贷款人的信用决策是最有效的。
问题来源:不良贷款数目增加;数据量变大
实验过程:
1、利用皮尔斯检验25个自变量的相关性,相关系数阈值为0.8。如果变量间相关系数绝对值大于0.8,也就代表可以删除其中一个变量。利用R软件的eta2()实现。
2、利用逐步回归方法自动选择变量,然后用优化准则对模型进行评估。利用R软件的Stepwise procedure程序实现。
3、准备训练集和测试集。
4、三种技术
4.1逻辑回归(2022.9.17 不明白)