论文1:神经网络和支持向量机进行信用风险评估

Artifificial Intelligence for Credit Risk Assessment: Artifificial Neural Network
and Support Vector Machines

及到的技术:皮尔斯检验、逐步回归、支持向量机、核函数、ANN。

研究问题:利用AI模型预测突尼斯银行贷款人信用风险的能力,主要是二分类问题。

研究方法:

     逻辑回归模型

     神经网络

     SVM支持向量机

研究结果:SVM中RBF核支持向量机对贷款人的信用决策是最有效的。


问题来源:不良贷款数目增加;数据量变大

实验过程:

1、利用皮尔斯检验25个自变量的相关性,相关系数阈值为0.8。如果变量间相关系数绝对值大于0.8,也就代表可以删除其中一个变量。利用R软件的eta2()实现。

2、利用逐步回归方法自动选择变量,然后用优化准则对模型进行评估。利用R软件的Stepwise procedure程序实现。

3、准备训练集和测试集。

4、三种技术

      4.1逻辑回归(2022.9.17 不明白)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值