一、 Γ \Gamma Γ函数的定义
二、应用
设随机变量X服从指数分布 e ( λ ) e\left ( \lambda \right ) e(λ) ,概率密度为 f ( x ) = { 1 λ e − x λ , x > 0 0 , x ≤ 0 f\left ( x \right ) =\begin{cases} & \frac{1}{\lambda }e^{-\frac{x}{\lambda } }, x>0\\ & 0, x\le 0 \end{cases} f(x)={
λ1e−λx,x>00,x≤0求随机变量X的k阶原点矩及三阶、四阶中心矩。
【解答】X的k阶原点矩
ν X = E ( X k ) = 1 λ ∫ 0 + ∞ x k e − x / λ d x \nu _{X} =E\left ( X^{k} \right ) =\frac{1}{\lambda } \int_{0}^{+ \infty } x^{k} e^{-x/\lambda }dx νX=E(Xk)=λ1∫0+∞xke−x/λdx置换变量 x λ = t \frac{x}{\lambda } =t λx=t,得到
ν k ( X ) = λ k ∫ 0 + ∞ t k e − t d t \nu _{k} \left ( X \right ) =\lambda ^{k} \int_{0}^{+ \infty } t^{k} e^{-t} dt νk(X)=λk∫0+∞tke−tdt利用 Γ \Gamma Γ函数及其性质即得
n u k ( X ) = λ k Γ ( k + 1 ) = k ! λ k , \\nu _{k\left ( X \right ) } =\lambda ^{k} \Gamma \left ( k+1 \right ) =k!\lambda ^{k} , nu
Gamma函数及其应用-chi方分布,t分布及F分布
最新推荐文章于 2025-03-09 11:52:15 发布