Gamma函数及其应用-chi方分布,t分布及F分布

一、 Γ \Gamma Γ函数的定义
在这里插入图片描述
在这里插入图片描述
二、应用
设随机变量X服从指数分布 e ( λ ) e\left ( \lambda \right ) e(λ) ,概率密度为 f ( x ) = { 1 λ e − x λ , x > 0 0 , x ≤ 0 f\left ( x \right ) =\begin{cases} & \frac{1}{\lambda }e^{-\frac{x}{\lambda } }, x>0\\ & 0, x\le 0 \end{cases} f(x)={ λ1eλx,x>00,x0求随机变量X的k阶原点矩及三阶、四阶中心矩。
【解答】X的k阶原点矩
ν X = E ( X k ) = 1 λ ∫ 0 + ∞ x k e − x / λ d x \nu _{X} =E\left ( X^{k} \right ) =\frac{1}{\lambda } \int_{0}^{+ \infty } x^{k} e^{-x/\lambda }dx νX=E(Xk)=λ10+xkex/λdx置换变量 x λ = t \frac{x}{\lambda } =t λx=t,得到
ν k ( X ) = λ k ∫ 0 + ∞ t k e − t d t \nu _{k} \left ( X \right ) =\lambda ^{k} \int_{0}^{+ \infty } t^{k} e^{-t} dt νk(X)=λk0+tketdt利用 Γ \Gamma Γ函数及其性质即得
n u k ( X ) = λ k Γ ( k + 1 ) = k ! λ k , \\nu _{k\left ( X \right ) } =\lambda ^{k} \Gamma \left ( k+1 \right ) =k!\lambda ^{k} , nu

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值