Gamma函数及其应用-chi方分布,t分布及F分布

一、 Γ \Gamma Γ函数的定义
在这里插入图片描述
在这里插入图片描述
二、应用
设随机变量X服从指数分布 e ( λ ) e\left ( \lambda \right ) e(λ) ,概率密度为 f ( x ) = { 1 λ e − x λ , x > 0 0 , x ≤ 0 f\left ( x \right ) =\begin{cases} & \frac{1}{\lambda }e^{-\frac{x}{\lambda } }, x>0\\ & 0, x\le 0 \end{cases} f(x)={λ1eλx,x>00,x0求随机变量X的k阶原点矩及三阶、四阶中心矩。
【解答】X的k阶原点矩
ν X = E ( X k ) = 1 λ ∫ 0 + ∞ x k e − x / λ d x \nu _{X} =E\left ( X^{k} \right ) =\frac{1}{\lambda } \int_{0}^{+ \infty } x^{k} e^{-x/\lambda }dx νX=E(Xk)=λ10+xkex/λdx置换变量 x λ = t \frac{x}{\lambda } =t λx=t,得到
ν k ( X ) = λ k ∫ 0 + ∞ t k e − t d t \nu _{k} \left ( X \right ) =\lambda ^{k} \int_{0}^{+ \infty } t^{k} e^{-t} dt νk(X)=λk0+tketdt利用 Γ \Gamma Γ函数及其性质即得
n u k ( X ) = λ k Γ ( k + 1 ) = k ! λ k , \\nu _{k\left ( X \right ) } =\lambda ^{k} \Gamma \left ( k+1 \right ) =k!\lambda ^{k} , nuk(X)=λkΓ(k+1)=k!λk,k=1,2,3…
二阶中心矩为 μ 2 = ν 2 − ν 1 2 \mu _{2} =\nu _{2} -\nu _{1}^{2} μ2=ν2ν12
三阶中心距为 μ 3 = ν 3 − 3 ν 2 ν 1 + 2 ν 1 3 = 2 λ 3 \mu _{3} =\nu _{3} -3\nu _{2}\nu _{1} +2\nu _{1}^{3}=2\lambda ^{3} μ3=ν33ν2ν1+2ν13=2λ3
四阶中心矩为 μ 4 = ν 4 − 4 ν 3 ν 1 + 6 ν 2 ν 1 2 − 3 ν 1 4 = 9 λ 4 \mu _{4} =\nu _{4} -4\nu _{3}\nu _{1} +6\nu _{2}\nu _{1}^{2}-3\nu _{1}^{4}=9\lambda ^{4} μ4=ν44ν3ν1+6ν2ν123ν14=9λ4
三、 χ 2 \chi ^{2} χ2 分布
设随机变量 X 1 , X 2 , X 3 , . . . , X k , X_{1} ,X_{2} ,X_{3} ,...,X_{k} , X1,X2,X3,...,Xk,相互独立,都服从标准正态分布N(0,1),则随机变量 χ 2 = X 1 2 + X 2 2 + . . . X k 2 \chi ^2=X_{1}^2+X_{2}^2+...X_{k}^2 χ2=X12+X22+...Xk2
的概率密度函数为
在这里插入图片描述
则称随机变量 χ 2 \chi ^2 χ2服从自由度为k的 χ 2 \chi ^2 χ2分布,记作
χ 2 ∼ χ 2 ( k ) \chi ^{2}\sim \chi ^{2}\left ( k \right ) χ2χ2(k)
其中,k为对立随机变量的个数
在这里插入图片描述
其具有可叠加性 χ 1 2 + χ 2 2 ∼ χ 2 ( k 1 + k 2 ) \chi _{1}^{2} +\chi _{2}^{2}\sim \chi^2\left ( k_{1}+k_{2} \right ) χ12+χ22χ2(k1+k2)
P ( χ 2 ≥ χ α 2 ) = ∫ χ 2 + ∞ f χ 2 ( x ) = α P\left (\chi ^2\ge \chi _{\alpha }^{2} \right )=\int_{\chi^2}^{+\infty } f_{\chi^2} \left ( x \right )=\alpha P(χ2χα2)=χ2+fχ2(x)=α,在已知自由度k和alpha的条件下,可以求出 χ 2 \chi^2 χ2
在这里插入图片描述
四、t分布
设随机变量X与Y相互独立,X服从标准正态分布N(0,1),Y服从自由度为k的 χ 2 \chi^2 χ2分布,则随机变量 t = X Y / k t=\frac{X}{\sqrt{Y/k} } t=Y/k X 的概率密度为
f t ( x ) = Γ ( k + 1 2 ) k π Γ ( k 2 ) ( 1 + x 2 k ) − k + 1 2 f_{t} \left ( x \right )=\frac{\Gamma \left ( \frac{k+1}{2} \right ) }{\sqrt{k\pi}\Gamma \left ( \frac{k}{2} \right ) } \left ( 1+\frac{x^{2} }{k} \right ) ^{-\frac{k+1}{2} } ft(x)=kπ Γ(2k)Γ(2k+1)(1+kx2)2k+1
称随机变量t服从自由度为k的t分布,记作t~t(k)
不同k下的t分布
t分布应用
五、F分布
设随机变量X与Y相互独立,分别服从自由度为k1和k2的 χ 2 \chi^2 χ2分布,则随机变量 F = X / k 1 Y / k 2 F=\frac{X/k_{1} }{Y/k_{2} } F=Y/k2X/k1的概率密度为
f F ( x ) = { Γ ( k 1 + k 2 2 ) Γ ( k 1 2 ) Γ ( k 2 2 ) k 1 k 1 / 2 k 2 k 2 / 2 x k 1 2 − 1 ( k 1 x + k 2 ) k 1 + k 2 2 , x > 0 0 , x ≤ 0 f_{F} \left ( x \right ) =\begin{cases} & \frac{\Gamma \left ( \frac{k_1+k_2}{2} \right ) }{\Gamma \left ( \frac{k_1}{2} \right )\Gamma \left ( \frac{k_2}{2} \right ) } k_1^{k_1/2}k_2^{k_2/2}\frac{x^{\frac{k_1}{2}-1 }}{\left ( k_1x+k_2 \right )^{\frac{k_1+k_2}{2} } } , x> 0 \\ & 0, x\le 0 \end{cases} fF(x)=Γ(2k1)Γ(2k2)Γ(2k1+k2)k1k1/2k2k2/2(k1x+k2)2k1+k2x2k11,x>00,x0
称随机变量F服从自由度为(k1,k2)的F分布,记作F~F(k1,k2)。其中k1为分子的自由度,为第一自由度,k2是分母自由度,成为第二自由度。
F的分布曲线
F分布的应用计算

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值