循环神经网络和强化学习的区别

  • 机器学习的范式,称得上范式的,只有三种,监督学习,无监督学习,强化学习。他们三者解决的问题不同,这个不同是从数学的角度说明的。

  • 循环神经网络解决的问题是目标比较明确,没有跟环境的交互,就是一种时序模型,按照目标函数去学习即可以;每一步不需要从外部获取奖惩,rnn也可以处理时间序列,也是一系列数据,没错,但本质上它依旧是一次预测。是网络结构,是对x的元素关系建模。循环循环神经网络也好,递归神经网络也好,都是监督学习。

  • 强化学习解决的问题是,你给我一个x,我给你一个y,接下来,我给你的这个y会影响到下一个x,然后我再给你新的y,这个过程不断的进行下去。强化学习解决的多次,相互影响的预测。强化学习特别适合解决动态规划类问题,例如迷宫问题,下棋,打怪游戏等,通过跟环境的不断交互获得奖惩,每一步都是依赖上一步的奖惩;

  • rnn属于近似建模问题,rl属于优化控制问题

  • 强化学习是你给我一个x,我给你一个y,接下来,我给你的这个y会影响到下一个x,然后我再给你新的y,这个过程不断的进行下去。循环神经网络是你给我一个x,我给你一个y,接下来,我给你的这个y不会影响到下一个x,对x的元素关系建模。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小学生码程序

如何帮助到您,请作者喝杯咖啡哦

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值