-
机器学习的范式,称得上范式的,只有三种,监督学习,无监督学习,强化学习。他们三者解决的问题不同,这个不同是从数学的角度说明的。
-
循环神经网络解决的问题是目标比较明确,没有跟环境的交互,就是一种时序模型,按照目标函数去学习即可以;每一步不需要从外部获取奖惩,rnn也可以处理时间序列,也是一系列数据,没错,但本质上它依旧是一次预测。是网络结构,是对x的元素关系建模。循环循环神经网络也好,递归神经网络也好,都是监督学习。
-
强化学习解决的问题是,你给我一个x,我给你一个y,接下来,我给你的这个y会影响到下一个x,然后我再给你新的y,这个过程不断的进行下去。强化学习解决的多次,相互影响的预测。强化学习特别适合解决动态规划类问题,例如迷宫问题,下棋,打怪游戏等,通过跟环境的不断交互获得奖惩,每一步都是依赖上一步的奖惩;
-
rnn属于近似建模问题,rl属于优化控制问题
-
强化学习是你给我一个x,我给你一个y,接下来,我给你的这个y会影响到下一个x,然后我再给你新的y,这个过程不断的进行下去。循环神经网络是你给我一个x,我给你一个y,接下来,我给你的这个y不会影响到下一个x,对x的元素关系建模。
循环神经网络和强化学习的区别
最新推荐文章于 2024-09-12 05:34:52 发布