实对称矩阵的奇异值等于特征值

实对称矩阵的奇异值等于特征值

首先,来看一下什么叫作矩阵的奇异值,根据课本上的定义1
在这里插入图片描述
定理1: 实对称矩阵的奇异值等于其特征值.
证明: 对于实对称矩阵 A A A, 其特征值为 λ 1 , λ 2 , . . . , λ n \lambda_1,\lambda_2,...,\lambda_n λ1,λ2,...,λn. 由某个定理可知(自己查找一下), A 2 A^2 A2的特征值为 λ 1 2 , λ 2 2 , . . . , λ n 2 \lambda_1^2,\lambda_2^2,...,\lambda_n^2 λ12,λ22,...,λn2. 根据实对称矩阵的性质, A H A = A 2 A^HA=A^2 AHA=A2. 定理,得证.

实对称矩阵的SVD分解

定理2: 实对称矩阵SVD分解的左右奇异向量相等.
证明: 对于实对称矩阵 A A A, 其特征值为 λ 1 , λ 2 , . . . , λ n \lambda_1,\lambda_2,...,\lambda_n λ1,λ2,...,λn,根据定理1, 也是其奇异值. 对应的单位化后的特征向量为 u 1 , u 2 , . . . , u n u_1,u_2,...,u_n u1,u2,...,un. 那么有, A [ u 1 , u 2 , . . . , u n ] = [ u 1 , u 2 , . . . , u n ] d i a g ( λ 1 , λ 2 , . . . , λ n ) A[u_1,u_2,...,u_n]=[u_1,u_2,...,u_n]diag(\lambda_1,\lambda_2,...,\lambda_n) A[u1,u2,...,un]=[u1,u2,...,un]diag(λ1,λ2,...,λn). 令 U = [ u 1 , u 2 , . . . , u n ] , Σ = d i a g ( λ 1 , λ 2 , . . . , λ n ) U=[u_1,u_2,...,u_n], \Sigma=diag(\lambda_1,\lambda_2,...,\lambda_n) U=[u1,u2,...,un],Σ=diag(λ1,λ2,...,λn), 则 A U = U Σ AU=U\Sigma AU=UΣ, 且 U H U = I U^HU=I UHU=I是酉矩阵,那么 A = U Σ U H A=U\Sigma U^H A=UΣUH, 定理得证.

对你有帮助的话点赞支持下!


  1. 矩阵论简明教程,徐仲 ↩︎

  • 5
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值