UA MATH567 高维统计专题1 稀疏信号及其恢复1 L0-norm minimization

本文介绍了高维统计中关于稀疏信号恢复的话题,重点探讨了L0-norm的概念及其在信号处理中的应用。L0-norm表示向量中非零元素的数量,虽不是真正的范数,但在寻找稀疏解决方案时非常有用。当信号足够稀疏时,通过L0-norm最小化可以准确恢复信号。然而,该问题被证明是NP-hard,意味着在多项式时间内找到最优解是困难的。
摘要由CSDN通过智能技术生成

这个专题我们讨论sparse signal recovery,作为这个专题的开头,我们先简单介绍一下sparse vector的norm;熟悉DSP的同学应该比较清楚,用vector和matrix来表示signal是非常常规的操作,那么sparse signal用sparse vector来表示就非常合理,之所以要从sparse vector的norm开始讨论是因为我们需要去理解一个很长的sparse vector的结构,并以此设计一些更高效的算法。

下图摘自Wright, Ma的高维数据分析图2.6
在这里插入图片描述

L p L^p Lp-norm是我们高维数据中最常用的范数,
∥ x ∥ p = ( ∑ i = 1 n ∣ x i ∣ p ) 1 / p \left\| x \right\|_p = \left( \sum_{i=1}^n |x_i|^p \right)^{1/p} xp=(i=1nxip)1/p

如果 p ≥ 1 p \ge 1 p1,则上面的定义是范数;如果 0 < p < 1 0<p<1 0<p<1,则上式不满足范数公理化定义中的三角不等式,无法成为范数,如果需要三角不等式,则可以用下面这个定义
∑ i = 1 n ∣ x i ∣ p \sum_{i=1}^n |x_i|^p i=1nxip

但这个定义不满足正齐次性。从上图可以看出,当 p p p减小时, L p L^p Lp-ball中的vector被shrink得越厉害,对应在sparse signal的设定中,noise就会被shrink掉,而signal得以保留。因此我们总是希望被复原的signal的范数( p p p越小的范数越好)不大于某一个阈值。

L 0 L^0 L0-norm

最小可能的 p p p为0,按上面的分析 L 0 L^0 L0-norm就是最好用的,直观理解 L 0 L^0 L0-norm就是向量中不为0的元素个数
∥ x ∥ 0 = # { i : x i ≠ 0 } \left\| x\right\|_0=\#\{i:x_i \ne 0\} x0=#{ i:xi=0}

但是虽然叫 L 0 L^0 L0-norm,但它本身并不是一个范数,因为它不满足正齐次性:
∀ c ∈ R , ∥ c x ∥ 0 = ∥ x ∥ 0 ≠ c ∥ x ∥ 0 \forall c \in \mathbb{R},\left\| c x \right\|_0 =\left\| x\right\|_0 \ne c\left\| x\right\|_0 cR,cx0=x0=cx0

所以尽管它满足三角不等式,它也不是一个范数。

之所以我们称之为范数,并把它归为 L p L^p Lp-norm这一类,是因为
lim ⁡ p → 0 ∥ x ∥ p p = lim ⁡ p → 0 ∑ i = 1 n ∣ x i ∣ p = ∑ i = 1 n lim ⁡ p → 0 ∣ x i ∣ p = ∑ i = 1 n 1 x i ≠ 0 = ∥ x ∥ 0 \lim_{p \to 0}\left\| x \right\|_{p}^p =\lim_{p \to 0} \sum_{i=1}^n |x_i|^p= \sum_{i=1}^n\lim_{p \to 0}|x_i|^p=\sum_{i=1}^n 1_{x_i \ne 0}=\left\| x\right\|_0 p0limxpp=p0limi=1nxip=i=1np0limxip=i=1n1xi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值