物理光学1 波动方程与基础波函数
光是一种电磁波,所以在介绍物理光学前我们先回顾一下电磁波的内容。波的物理含义是场的空间分布随时间变化的现象,因此电磁波也就是电磁场在空间中的分布随着时间变化的物理现象。通常用 ψ ( x , t ) \psi(\textbf x,t) ψ(x,t)表示波函数,其中 x \textbf x x表示空间坐标, t t t表示时间, ψ \psi ψ表示某个场。
波动方程与基础波函数
如果 ψ ( x , 0 ) = f ( x ) \psi(\textbf x,0)=f(\textbf x) ψ(x,0)=f(x),场的传播速度为 v \textbf v v(常向量),则经过 t t t的时间后,位于 x \textbf x x处的场已经变成了 f ( x − v t ) f(\textbf x-\textbf v t) f(x−vt),也就是
ψ ( x , t ) = f ( x − v t ) \psi(\textbf x,t)=f(\textbf x - \textbf v t) ψ(x,t)=f(x−vt)
不难发现满足这个式子的波函数也满足
( Δ − 1 ∣ v ∣ 2 ∂ 2 ∂ t 2 ) ψ = 0 \left( \Delta -\frac{1}{|\textbf v|^2} \frac{\partial^2}{\partial t^2} \right)\psi=0 (Δ−∣v∣21∂t2∂2)ψ=0
称这个方程为波动方程, ∣ v ∣ |\textbf v| ∣v∣为波速,其中 Δ \Delta Δ是Laplace算子,
Δ = ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 \Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} Δ=∂x2∂2+∂y2∂2+∂z2∂2
因此称 f ( x ± v t ) f(\textbf x \pm \textbf v t) f(x±vt)为波动方程的通解。下面的波动函数被称为基本波动函数(fundamental wave function)是
ψ ( x , t ) = A cos ( k ⋅ x − w t ) \psi(\textbf x,t)=A\cos (\textbf k \cdot \textbf x-wt)