物理光学1 波动方程与基础波函数

本文介绍了物理光学中的波动方程和基础波函数。波动方程描述了电磁波随时间和空间变化的规律,基础波函数以余弦形式表达,其中涉及波长、频率、波速和相位等概念。通过复数表示,可以简化运算并理解光波在测量过程中的平均行为。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

物理光学1 波动方程与基础波函数

光是一种电磁波,所以在介绍物理光学前我们先回顾一下电磁波的内容。波的物理含义是场的空间分布随时间变化的现象,因此电磁波也就是电磁场在空间中的分布随着时间变化的物理现象。通常用 ψ ( x , t ) \psi(\textbf x,t) ψ(x,t)表示波函数,其中 x \textbf x x表示空间坐标, t t t表示时间, ψ \psi ψ表示某个场。

波动方程与基础波函数

如果 ψ ( x , 0 ) = f ( x ) \psi(\textbf x,0)=f(\textbf x) ψ(x,0)=f(x),场的传播速度为 v \textbf v v(常向量),则经过 t t t的时间后,位于 x \textbf x x处的场已经变成了 f ( x − v t ) f(\textbf x-\textbf v t) f(xvt),也就是
ψ ( x , t ) = f ( x − v t ) \psi(\textbf x,t)=f(\textbf x - \textbf v t) ψ(x,t)=f(xvt)

不难发现满足这个式子的波函数也满足
( Δ − 1 ∣ v ∣ 2 ∂ 2 ∂ t 2 ) ψ = 0 \left( \Delta -\frac{1}{|\textbf v|^2} \frac{\partial^2}{\partial t^2} \right)\psi=0 (Δv21t22)ψ=0

称这个方程为波动方程, ∣ v ∣ |\textbf v| v为波速,其中 Δ \Delta Δ是Laplace算子,
Δ = ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 \Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} Δ=x22+y22+z22

因此称 f ( x ± v t ) f(\textbf x \pm \textbf v t) f(x±vt)为波动方程的通解。下面的波动函数被称为基本波动函数(fundamental wave function)是
ψ ( x , t ) = A cos ⁡ ( k ⋅ x − w t ) \psi(\textbf x,t)=A\cos (\textbf k \cdot \textbf x-wt)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值