常见分布与假设检验

常见分布与假设检验

一般随机变量

随机变量包括:离散型(取值有限)和连续型(取值无限)。

离散型随机变量

概率质量函数(probability mass function),简称PMF。用来描述离散型随机变量分布律。
概率密度函数(probability density function),简称PDF。来描述连续型随机变量分布情况。
注意点:连续型随机变量在取任何固定值的概率都为0,因此讨论其在特定值上的概率是没有意义的,应当讨论其在某一个区间范围内的概率,这就用到了概率密度函数的概念。

累积分布函数 (cumulative distribution function),简称CDF。在数学上累积分布函数(CDF)是概率密度函数(PDF)的积分形式。

分布函数是定义域为R的一个普通函数,分布函数F(x)在点x处的函数值表示X落在区间(−∞,x]内的概率,因此我们可以把概率问题转化为函数问题,从而可以利用普通的函数知识来研究概率问题,增大了概率的研究范围。

常见分布

离散型分布

二项分布:只有两种结果(成功/失败)的单次试验重复多次后成功次数的分布概率。
在n次试验中,单次试验成功率为p,失败率q=1-p,则出现成功次数的概率为:
P ( X = x ) = C n x p x q n − x P(X=x)=C_n^xp^xq^{n-x} P(X=x)=Cnxpxqnx
泊松分布的条件:

  1. 试验次数n趋向于无穷大
  2. 单次事件发生的概率p趋向于0
  3. np是一个有限的数值
    一个服从泊松分布的随机变量X,在具有比率参数(rate parameter)λ (λ=np)的一段固定时间间隔内,事件发生次数为i的概率为:
    P ( X = i ) = e − λ λ i i ! P(X=i)=e^{-\lambda}\frac{\lambda^i}{i!} P(X=i)=eλi!λi

二项分布,泊松分布,正态分布的关系:
当n很大,p很小时,如n ≥ 100 and np ≤ 10时,二项分布可以近似为泊松分布。

当λ很大时,如λ≥1000时,泊松分布可以近似为正态分布。

当n很大时,np和n(1-p)都足够大时,如n ≥ 100 , np ≥10,n(1-p) ≥10时,二项分布可以近似为正态分布。

连续型分布

均匀分布(Uniform distribution):在定义域内概率密度函数处处相等的统计分布
均匀分布X的概率密度函数为:
f ( x ) = { 1 b − a , a ≤ x ≤ b   0 , o t h e r s f(x)=\begin{cases} \frac{1}{b-a}, & a \leq x \leq b \ 0, & others \end{cases} f(x)={ba1,axb 0,others
正态分布: 也叫做高斯分布,是一种对称的分布。
概率密度呈现钟摆的形状,其概率密度函数为:
f ( x ) = 1 2 π σ e − ( x − u ) 2 2 σ 2 f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{\frac{-(x-u)^2}{2\sigma ^2}} f(x)=2π σ1e2σ2(xu)2记为X ~ N(μ, σ2) , 其中μ为正态分布的均值,σ为正态分布的标准差
指数分布:被广泛用在描述一个特定事件发生所需要的时间,在指数分布随机变量的分布中,有着很少的大数值和非常多的小数值。
指数分布的概率密度函数为:
f ( x ) = { λ e − λ x , x ≥ 0 , x < 0 f(x)=\begin{cases} \lambda e^{-\lambda x},x\geq 0,x<0 \end{cases} f(x)={λeλx,x0x<0记为 X~E(λ), 其中λ被称为率参数(rate parameter),表示每单位时间发生该事件的次数。
分布函数为:
F ( a ) = P X ≤ a = 1 − e − λ a , a ≥ 0 F(a)=PX\leq a=1-e^{-\lambda a},a\geq 0 F(a)=PXa=1eλa,a0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值