随机事件与随机变量学习笔记

随机事件与随机变量学习笔记

从基本概念,随机事件的概率,古典概型,条件概率和全概率公式和贝叶斯公式这些方面学习随机事件相关知识。
了解随机变量及其分布,以及方差,协方差和相关系数。

随机事件

基本概念

随机现象:在一定条件下,实现不能预知实验结果,只能确定可能发生的实验结果
样本空间:随机试验所有可能发生结果的集合
样本点:随机试验可能发生的每一个实验结果
随机事件:样本空间的子集,用大写字母表示A,B,C…
必然事件:在每次试验中,必然会发生的事件。样本空间就是必然事件。
不可能事件:空集不包含任何样本点,并且每次实验中总不发生。或者样本点不属于该实验的样本空间。

概率

定义
对于每个事件A,定义一个实数P(A)与之对应,若函数P(.)满足条件:

  1. 对每个事件A,均有0<P(A)<=1;
  2. P(Ω)=1;
  3. 若事件A1,A2,A3,…两两互斥,即对于i,j=1,2,…,i≠j,Ai∩Aj=ϕ,均有P(A1∪A2∪…)=P(A1)+P(A2)+…

则P(A)称为事件A的概率。

古典概型

定义:每次实验有且仅有一个样本点发生,并且每个样本点发生的概率一致。
若事件 A 包含个m 个样本点,则事件 A 的概率定义为:
P ( A ) = m n = 事 件 A 包 含 的 基 本 事 件 数 基 本 事 件 总 数 P(A) = \frac{m}{n} = \frac{事件A包含的基本事件数}{基本事件总数} P(A)=nm=A

条件概率

定义:假设A和B是两个事件,且P(B)>0。那么在事件B发生的情况下,事件A发生的概率记为:
P ( A ∣ B ) = P ( A B ) P ( B ) P(A|B) = \frac{P(AB)}{P(B)} P(AB)=P(B)P(AB)

全概率公式和贝叶斯公式

概率乘法公式
由:
P ( A ∣ B ) = P ( A B ) P ( B ) P(A|B) = \frac{P(AB)}{P(B)} P(AB)=P(B)P(AB) P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A) = \frac{P(AB)}{P(A)} P(BA)=P(A)P(AB)可得:P(AB)=P(B|A)P(A)=P(A|B)P(B)

如果事件组,满足:

  1. B1,B2,… 两两互斥,即Bi∩Bj=ϕ,i≠j,i,j=1,2,…,且P(Bi)>0,i=1,2,…
  2. B1∪B2∪…=Ω

则称事件组B1,B2,…是样本空间 Ω 的一个划分。
全概率公式
设B1,B2,…是样本空间 Ω 的一个划分,A 为任一事件,则
P ( A ) = ∑ i = 1 ∞ P ( B i ) P ( A ∣ B i ) P(A)=\sum_{i=1}^\infty P(B_i)P(A|B_i) P(A)=i=1P(Bi)P(ABi)称为全概率公式。
贝叶斯公式:
设B1,B2,…是样本空间 Ω 的一个划分,则对任一事件 A(P(A)>0) ,有:
P ( B i ∣ A ) = P ( B i A ) P ( A ) = P ( A ∣ B i ) P ( B i ) ∑ j = 1 ∞ P ( B j ) P ( A ∣ B j ) , j = 1 , 2 , 3... P(B_i|A) = \frac{P(B_iA)}{P(A)} = \frac{P(A|B_i) P(B_i)}{\sum_{j=1}^\infty P(B_j)P(A|B_j)} , j=1,2,3... P(BiA)=P(A)P(BiA)=j=1P(Bj)P(ABj)P(ABi)P(Bi),j=1,2,3...称上式为贝叶斯公式,称P(Bi)(i=1,2,…)为先验概率,P(Bi|A)(i=1,2,…)为后验概率。上述公式根据全概率公式和乘法公式推导而来。

随机变量

随机变量及其分布

随机变量定义:设 E 是随机试验,Ω 是样本空间,如果对于每一个 ω∈Ω 。都有一个确定的实数 X(ω) 与之对应,若对于任意实 x∈R , 有 ω:X(ω)<x∈F ,则称 Ω 上的单值实函数 X(ω) 为一个随机变量。
随机变量分布函数定义
设 X 是一个随机变量,对任意的实数 x ,令
F ( x ) = P X < = x , x ∈ ( − ∞ , + ∞ ) F(x)=PX<=x,x∈(−\infty,+\infty) F(x)=PX<=x,x(,+)​ 则称 F(x) 为随机变量 x 的分布函数,也称为概率累积函数。

离散变量

​ 如果随机变量 X 的全部可能取值只有有限多个或可列无穷多个,则称 X 为离散型随机变量。
对于离散型随机变量 X 可能取值为 xk的概率为:
P X = x k = p k , k = 1 , 2 , . . . PX=xk=pk,k=1,2,... PX=xk=pk,k=1,2,...则称上式为离散型随机变量 X 的分布律。

常见的离散变量分布

二项分布

定义:如果一个随机试验只有两种可能的结果 A 和 A ˉ \bar A Aˉ,并且
P ( A ) = p , P ( A ˉ ) = 1 − p = q P(A)=p,P(\bar A)=1−p=q P(A)=pP(Aˉ)=1p=q其中, 0<p<1 ,则称此试验为Bernoulli(伯努利)试验. Bernoulli试验独立重复进行 n 次,称为 n 重伯努利试验。
分布函数:
若随机变量 X 的分布律为:
P X = k = C n k p k ( 1 − p ) n − k , k = 0 , 1 , 2 , . . . n PX = k = C_n^kp^k(1-p)^{n-k},k=0,1,2,...n PX=k=Cnkpk(1p)nk,k=0,1,2,...n其分布函数: F ( x ) = ∑ k = [ k ] C n k p k ( 1 − p ) n − k , k = 0 , 1 , 2 , . . . n F(x)=\sum_{k=}^{[k]}C_n^kp^k(1-p)^{n-k},k=0,1,2,...n Fx=k=[k]Cnkpk(1p)nk,k=0,1,2,...n其中, [x] 表示下取整,即不超过 x 的最大整数。

随机变量特征

数学期望

离散型:设离散型随机变量 X 的分布律为$ PX=x_i=pi,i=1,2,…, $ 若级数 ∑i|xi|pi 收敛,则随机变量 X 的数学期望。记为 E(X) ,即:
E ( X ) = ∑ i x i p i E(X) = \sum_ix_i p_i E(X)=ixipi设连续型随机变量 X 的概率密度函数为 f(x) ,若积分 ∫+∞−∞|x|f(x)dx 收敛,随机变量 X 的数学期望,记为 E(X) ,即:
E ( X ) = ∫ − ∞ + ∞ x f ( x ) d x E(X) = \int_{-\infty}^{+\infty}xf(x)dx E(X)=+xf(x)dx

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值