习题12-3
1. 求下列幂级数的收敛区间:
(1) x + 2 x 2 + 3 x 3 + ⋯ + n x n + ⋯ x+2 x^2+3 x^3+\cdots+n x^n+\cdots x+2x2+3x3+⋯+nxn+⋯;
(2) 1 − x + x 2 2 2 + ⋯ + ( − 1 ) n x n n 2 + ⋯ 1-x+\frac{x^2}{2^2}+\cdots+(-1)^n \frac{x^n}{n^2}+\cdots 1−x+22x2+⋯+(−1)nn2xn+⋯;
(3) x 2 + x 2 2 ⋅ 4 + x 3 2 ⋅ 4 ⋅ 6 + ⋯ + x n 2 ⋅ 4 ⋅ ⋯ ⋅ ( 2 n ) + ⋯ \frac{x}{2}+\frac{x^2}{2 \cdot 4}+\frac{x^3}{2 \cdot 4 \cdot 6}+\cdots+\frac{x^n}{2 \cdot 4 \cdot \cdots \cdot(2 n)}+\cdots 2x+2⋅4x2+2⋅4⋅6x3+⋯+2⋅4⋅⋯⋅(2n)xn+⋯;
(4) x 1 ⋅ 3 + x 2 2 ⋅ 3 2 + x 3 3 ⋅ 3 3 + ⋯ + x n n ⋅ 3 n + ⋯ \frac{x}{1 \cdot 3}+\frac{x^2}{2 \cdot 3^2}+\frac{x^3}{3 \cdot 3^3}+\cdots+\frac{x^n}{n \cdot 3^n}+\cdots 1⋅3x+2⋅32x2+3⋅33x3+⋯+n⋅3nxn+⋯;
(5) 2 2 x + 2 2 5 x 2 + 2 3 10 x 3 + ⋯ + 2 n n 2 + 1 x n + ⋯ \frac{2}{2} x+\frac{2^2}{5} x^2+\frac{2^3}{10} x^3+\cdots+\frac{2^n}{n^2+1} x^n+\cdots 22x+522x2+1023x3+⋯+n2+12nxn+⋯;
(6) ∑ n = 1 ∞ ( − 1 ) n x 2 n + 1 2 n + 1 \sum_{n=1}^{\infty}(-1)^n \frac{x^{2 n+1}}{2 n+1} ∑n=1∞(−1)n2n+1x2n+1;
(7) ∑ n = 1 ∞ 2 n − 1 2 n x 2 n − 2 \sum_{n=1}^{\infty} \frac{2 n-1}{2^n} x^{2 n-2} ∑n=1∞2n2n−1x2n−2;
(8) ∑ n = 1 ∞ ( x − 5 ) n n \sum_{n=1}^{\infty} \frac{(x-5)^n}{\sqrt{n}} ∑n=1∞n(x−5)n.
2. 利用逐项求导或逐项积分, 求下列级数的和函数:
(1) ∑ n = 1 ∞ n x n − 1 \sum_{n=1}^{\infty} n x^{n-1} ∑n=1∞nxn−1;
(2) ∑ n = 1 ∞ x 4 n + 1 4 n + 1 \sum_{n=1}^{\infty} \frac{x^{4_{n+1}}}{4 n+1} ∑n=1∞4n+1x4n+1;
(3) x + x 3 3 + x 5 5 + ⋯ + x 2 n − 1 2 n − 1 + ⋯ x+\frac{x^3}{3}+\frac{x^5}{5}+\cdots+\frac{x^{2 n-1}}{2 n-1}+\cdots x+3x3+5x5+⋯+2n−1x2n−1+⋯;
(4) ∑ n = 1 ∞ ( n + 2 ) x n + 3 \sum_{n=1}^{\infty}(n+2) x^{n+3} ∑n=1∞(n+2)xn+3.