基于李雅普诺夫函数的跟踪控制(三)

基于李雅普诺夫函数的跟踪控制(三)

前言

   本系列将会介绍基于李雅普诺夫函数的跟踪控制问题,以多个不同的例子来具体说明,如何根据李雅普诺夫函数来求解控制律,实现跟踪控制。总共分为7篇博客讲解,分别针对不同的情况。

跟踪控制—系列博客总览

  1. 一阶时不变系统,系统已知,且无扰动
  2. 一阶时不变系统,系统已知,有扰动
  3. 高阶时不变系统,系统已知,且无扰动
  4. 一阶时不变系统,系统部分已知,且无扰动
  5. 一阶时变系统,系统部分已知,且无扰动
  6. 一阶时变系统,系统部分未知,且有扰动
  7. 一阶时不变系统,系统完全未知,且无扰动

   本期讲解的是:高阶时不变系统,系统已知,且无扰动。

问题描述

   已知系统
x ˙ = f ( x ) + u y ˙ = x (1) \begin{matrix} \dot x=f(x)+u \\ \dot y=x \tag{1} \end{matrix} x˙=f(x)+uy˙=x(1)
   其中, f ( x ) f(x) f(x)已知,,求解 u u u使得 y y y跟踪 y d y_d yd

求解

   对于这个问题,首先得拆解问题,首先设计 x x x跟踪 y d y_d yd,然后设计 u u u跟踪 x d x_d xd

   (1) 设计 x x x跟踪 y d y_d yd

   设 x x x跟踪 y d y_d yd的误差及其导数
e 1 ( t ) = y d ( t ) − y ( t ) (2) e_1(t)=y_d(t)-y(t) \tag{2} e1(t)=yd(t)y(t)(2)
e 1 ( t ) ˙ = y d ( t ) ˙ − y ( t ) ˙ = y d ( t ) ˙ − x (3) \dot {e_1(t)}=\dot{y_d(t)}-\dot{y(t)} = \dot{y_d(t)}- x \tag{3} e1(t)˙=yd(t)˙y(t)˙=yd(t)˙x(3)

   取李雅普诺夫函数:
V 1 = 1 2 e 1 2 (4) V_1 = \frac{1}{2}e_1^2 \tag{4} V1=21e12(4)
   则, V ˙ 1 = e 1 ( e ˙ 1 ) = e 1 ( y d ( t ) ˙ − x ) (5) \dot V_1 = e_1(\dot e_1) = e_1(\dot{y_d(t)}- x) \tag{5} V˙1=e1(e˙1)=e1(yd(t)˙x)(5)

   令:
− k 1 e 1 = = y d ( t ) ˙ − x (8) -k_1e_1= = \dot{y_d(t)}- x \tag{8} k1e1==yd(t)˙x(8)
   则可以得到:

V ˙ 1 = − k 1 e 1 2 (7) \dot V_1 = -k_1e_1^2 \tag{7} V˙1=k1e12(7)
   所以:
x d = y d ( t ) ˙ + k 1 e 1 (8) x_d=\dot{y_d(t)}+k_1e_1 \tag{8} xd=yd(t)˙+k1e1(8)

   (2) 设计 u u u跟踪 x d x_d xd

   设 u u u跟踪 x d x_d xd的误差及其导数
e 2 ( t ) = x d ( t ) − x ( t ) (9) e_2(t)=x_d(t)-x(t) \tag{9} e2(t)=xd(t)x(t)(9)
e 2 ( t ) ˙ = x d ( t ) ˙ − x ( t ) ˙ = y d ( t ) ¨ + k 1 ( y d ( t ) ˙ − x ) − f ( x ) − u ( t ) (10) \dot {e_2(t)}=\dot{x_d(t)}-\dot{x(t)} = \ddot{y_d(t)}+k_1( \dot{y_d(t)}-x)-f(x)-u(t) \tag{10} e2(t)˙=xd(t)˙x(t)˙=yd(t)¨+k1(yd(t)˙x)f(x)u(t)(10)

   取李雅普诺夫函数:
V 2 = 1 2 e 2 2 (11) V_2 = \frac{1}{2}e_2^2 \tag{11} V2=21e22(11)
   则, V ˙ 2 = e 2 ( e ˙ 2 ) = e 2 ( y d ( t ) ¨ + k 1 ( y d ( t ) ˙ − x ) − f ( x ) − u ( t ) ) (12) \dot V_2 = e_2(\dot e_2) = e_2( \ddot{y_d(t)}+k_1( \dot{y_d(t)}-x)-f(x)-u(t)) \tag{12} V˙2=e2(e˙2)=e2(yd(t)¨+k1(yd(t)˙x)f(x)u(t))(12)

   令:
− k 2 e 2 = = y d ( t ) ¨ + k 1 ( y d ( t ) ˙ − x ) − f ( x ) − u ( t ) (13) -k_2e_2= = \ddot{y_d(t)}+k_1( \dot{y_d(t)}-x)-f(x)-u(t) \tag{13} k2e2==yd(t)¨+k1(yd(t)˙x)f(x)u(t)(13)
   则可以得到:

V ˙ 2 = − k 2 e 2 2 (14) \dot V_2 = -k_2e_2^2 \tag{14} V˙2=k2e22(14)
   所以:
u ( t ) = y d ( t ) ¨ + k 1 ( y d ( t ) ˙ − x ) − f ( x ) + k 2 e 2 (15) u(t) = \ddot{y_d(t)}+k_1( \dot{y_d(t)}-x)-f(x) +k_2e_2 \tag{15} u(t)=yd(t)¨+k1(yd(t)˙x)f(x)+k2e2(15)

   (3) 同时收敛分析

   以上的 V 1 V_1 V1 V 2 V_2 V2必须保证同时收敛,也就是能够同时实现 x x x跟踪 y d y_d yd,然后设计 u u u跟踪 x d x_d xd

   因此取:

V = V 1 + V 2 = 1 2 e 1 2 + 1 2 e 2 2 (16) V = V_1+V_2= \frac{1}{2}e_1^2 + \frac{1}{2}e_2^2 \tag{16} V=V1+V2=21e12+21e22(16)
V ˙ = V 1 ˙ + V 2 ˙ = − k 1 e 1 2 − k 2 e 2 2 (17) \dot V = \dot{V_1}+\dot{V_2}= -k_1 e_1^2 - k_2 e_2^2 \tag{17} V˙=V1˙+V2˙=k1e12k2e22(17)
   d o t V < = 0 dot V <=0 dotV<=0,而且 V V V是一个负定的,因此,当存在 e 1 e_1 e1 e 2 e_2 e2不等于0时,一定有 V ˙ < 0 \dot V <0 V˙<0 V V V将会一直下降,同时 V V V是满足 V > = 0 V >=0 V>=0,所以 V V V就会一直趋近于0,即e下降,直到 e = 0 e=0 e=0。因此当 e 1 e_1 e1 e 2 e_2 e2都为0时,系统才会稳定。

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cuntou0906

玛莎拉蒂是我的目标!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值