基于李雅普诺夫函数的跟踪控制(二)

基于李雅普诺夫函数的跟踪控制(二)

前言

   本系列将会介绍基于李雅普诺夫函数的跟踪控制问题,以多个不同的例子来具体说明,如何根据李雅普诺夫函数来求解控制律,实现跟踪控制。总共分为7篇博客讲解,分别针对不同的情况。

跟踪控制—系列博客总览

  1. 一阶时不变系统,系统已知,且无扰动
  2. 一阶时不变系统,系统已知,有扰动
  3. 高阶时不变系统,系统已知,且无扰动
  4. 一阶时不变系统,系统部分已知,且无扰动
  5. 一阶时变系统,系统部分已知,且无扰动
  6. 一阶时变系统,系统部分未知,且有扰动
  7. 一阶时不变系统,系统完全未知,且无扰动

   本期讲解的是:一阶时不变系统,系统已知,有扰动。

问题描述

   已知系统
x ˙ = f ( x ) + u + g ( t ) (1) \dot x=f(x)+u +g(t) \tag{1} x˙=f(x)+u+g(t)(1)
   其中, f ( x ) f(x) f(x)已知, g ( t ) g(t) g(t)是一个扰动,并且满足 ∣ g ( t ) ∣ < = M |g(t)| <=M g(t)<=M,求解 u u u使得 x x x跟踪 x d x_d xd

求解

   设误差及其导数
e ( t ) = x d ( t ) − x ( t ) (2) e(t)=x_d(t)-x(t) \tag{2} e(t)=xd(t)x(t)(2)
e ( t ) ˙ = x d ( t ) ˙ − x ( t ) ˙ = x d ( t ) ˙ − f ( x ) − u − g ( t ) (3) \dot {e(t)}=\dot{x_d(t)}-\dot{x(t)} = \dot{x_d(t)}- f(x)-u -g(t) \tag{3} e(t)˙=xd(t)˙x(t)˙=xd(t)˙f(x)ug(t)(3)

   取李雅普诺夫函数:
V = 1 2 e 2 (4) V = \frac{1}{2}e^2 \tag{4} V=21e2(4)
   则, V ˙ = e ( e ˙ ) = e ( x d ( t ) ˙ − f ( x ) − u ) − e ∗ g ( t ) (5) \dot V = e(\dot e)=e( \dot{x_d(t)}- f(x)-u) - e*g(t) \tag{5} V˙=e(e˙)=e(xd(t)˙f(x)u)eg(t)(5)

   令:
− k e − M ∗ s g n ( e ) = u ( t ) = x d ( t ) ˙ − f ( x ) − u (8) -ke-M*sgn(e)=u(t) = \dot{x_d(t)}- f(x)-u \tag{8} keMsgn(e)=u(t)=xd(t)˙f(x)u(8)
   则可以得到:

V ˙ = − k e 2 − ( M ∗ e ∗ s n g ( e ) + e ∗ g ( t ) ) (7) \dot V = -ke^2 -(M*e*sng(e)+e*g(t)) \tag{7} V˙=ke2(Mesng(e)+eg(t))(7)
   因为 ∣ g ( t ) ∣ < = M |g(t)| <=M g(t)<=M,所以 M ∗ e ∗ s n g ( e ) + e ∗ g ( t ) 》 = 0 M*e*sng(e)+e*g(t)》=0 Mesng(e)+eg(t)=0恒成立,也就是 V ˙ < = 0 \dot V<=0 V˙<=0,即 V V V是一个单调递减的函数,那么随着时间推移, V V V将会一直下降,同时 V V V是满足 V > = 0 V >=0 V>=0,所以 V V V就会一直趋近于0,即e下降,直到 e = 0 e=0 e=0

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cuntou0906

玛莎拉蒂是我的目标!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值