二叉树基础(下):有了如此高效的散列表,为什么还需要二叉树

二叉查找树最大的特点就是:支持动态数据集合的快速插入、删除、查找操作。。。

散列表也是支持这些操作的,并且散列表这些操作比二叉查找树更高效,时间复杂度是O(1)。既然有了这么高效的散列表,使用二叉树的地方是不是都可以替换成散列表呢?有没有哪些地方是散列表做不了,必须要用二叉树来做的呢???

二叉查找树(Binary Search Tree)

也叫做二叉搜索树,二叉查找树是为了实现快速查找而生的。二叉树的要求在树中任意一个节点,其左子树中的每个节点的值,都要小于这个点的值,右子树节点的值都大于这个节点的值。
在这里插入图片描述

1、二叉查找树的查找操作

在这里插入图片描述
先取一个根节点,如果等于要查找的数据就返回;要查找的数据比根节点的值小,在左子树中递归查找;要查找的数据比根节点值大,在右子树中递归查找。。。

代码如下:

	public class BinarySearchTree {
		private Node tree;
		public Node find(int data) {
			Node p = tree;
			while (p != null) {
				if (data < p.data) p = p.left;
				else if (data > p.data) p = p.right;
				else return p;
			}
			return null;
			}
			public static class Node {
				private int data;
				private Node left;
				private Node right;
				
			public Node(int data) {
				this.data = data;
			}
		}
	}

2、二叉查找树的插入操作

在这里插入图片描述
插入的数据比节点的数据大且节点右子树为空将数据直接插到右子节点的位置;不是空递归遍历右子树查找插入位置。
插入的数据比节点的数据小且左子树为空将数据插入到左子节点的位置;不是空递归遍历左子树查找插入位置。。

public void insert(int data) {
	if (tree == null) {
		tree = new Node(data);
		return;
	}
	Node p = tree;
	while (p != null) {
		if (data > p.data) {
			if (p.right == null) {
				p.right = new Node(data);
				return;
			}
			p = p.right;
		} else { // data < p.data
			if (p.left == null) {
				p.left = new Node(data);
				return;
			}
			p = p.left;
		}
	}
}

3、二叉查找树的删除操作

针对删除节点的子节点个数的不同,要分三种情况来处理:

  1. 要删除的节点没有子节点,只需要直接将父节点中指向要删除节点的指针设置为null,比如图中的删除节点55
  2. 要删除的结点只有一个子节点(只有左子节点和右子节点)只需要更新父节点中指向要删除节点的指针,让它指向要删除节点的子节点就行了,比如图中的删除节点13.
  3. 要删除的结点有两个子节点相对比较复杂了。需要找到这个节点的右子树中的最小节点,将它替换到要删除的节点上。然后删除这个最小节点,因为最小节点肯定没有左子节点(如果没有左子结点就不是最小节点了)因此可以用上面两条规则来删除这个最小节点,比如图中删除节点18.
    在这里插入图片描述
public void delete(int data) {
	Node p = tree; // p 指向要删除的节点,初始化指向根节点
	Node pp = null; // pp 记录的是 p 的父节点
	while (p != null && p.data != data) {
		pp = p;
		if (data > p.data) p = p.right;
		else p = p.left;
	}
	if (p == null) return; // 没有找到
	// 要删除的节点有两个子节点
	if (p.left != null && p.right != null) { // 查找右子树中最小节点
		Node minP = p.right;
		Node minPP = p; // minPP 表示 minP 的父节点
		while (minP.left != null) {
			minPP = minP;
			minP = minP.left;
		}
		p.data = minP.data; // 将 minP 的数据替换到 p 中
		p = minP; // 下面就变成了删除 minP 了
		pp = minPP;
	}
	// 删除节点是叶子节点或者仅有一个子节点
	Node child; // p 的子节点
	if (p.left != null) child = p.left;
	else if (p.right != null) child = p.right;
	else child = null;
	if (pp == null) tree = child; // 删除的是根节点
	else if (pp.left == p) pp.left = child;
	else pp.right = child;
}

4、二叉查找树的其他操作

二叉查找树还支持快速查找最大节点和最小节点、前驱节点和后继节点,此外还有一个重要的特性就是中序遍历二叉查找树可以输出有序的数据序列,时间复杂度是O(n),非常高效。因此二叉查找树也叫二叉排序树。

支持重复数据的二叉查找树

实际开发中在二叉查找树中存储的是一个包含很多字段的对象。利用对象的某个字段作为键值来构建二叉查找树,把对象中的其他字段叫做卫星数据。

如果存储的两个对象键值相同该怎么处理?

  1. 二叉查找树中每一个节点不仅会存储一个数据,因此通过链表和支持动态扩容的数据等数据结构把值相同的数据都存储在同一个节点上。
  2. 每个节点只存储一个数据,在查找插入位置过程中如果碰到一个节点的值与要插入数据的值相同,就将这个要插入的数据放到这个节点的右子树,就是把这个新插入的数据当做大于这个节点的值来处理。
    在这里插入图片描述
    查到数据遇到值相同的节点,并不停止查找操作而是继续在右子树中查找,直到遇到叶子节点停止这样可以把键值等于要查找值的所有节点都找到。
    在这里插入图片描述
    删除操作需要先查找到每个要删除的节点然后按前面删除操作的方法依次删除。
    在这里插入图片描述

二叉查找树的时间复杂度分析

在这里插入图片描述
图中第一种二叉查找树根节点的左右子树极度不平衡,已经退化成了链表。时间复杂度变为O(n)。。。
不管操作是插入删除还是查找,时间复杂度都是跟树的高度成正比就是O(height)

显然极度不平衡的二叉查找树查找性能不能满足我们的需求,需要构建一种不管如何删除、插入数据在任何时候都能保持任意节点左右子树都比较平衡的二叉查找树,这是一种特殊的二叉查找树,平衡二叉查找树。平衡二叉查找树高度接近logn,因此插入、删除、查找操作时间复杂度比较稳定是O(logn)。

解答开篇

散列表的插入、删除、查找操作时间复杂度可以做到常量及级的O(1)非常高效。二叉查找树在比较平衡情况下插入删除查找操作时间复杂度才是O(logn)相对散列表好像没有任何优势,但是为什么要使用二叉查找树呢???
原因如下:

  1. 散列表中数据是无序存储的,如果要输出的有序的数据需要先进行排序。对于二叉查找树来说只需要中序遍历,可以在O(n)时间复杂度内输出有序的数据序列
  2. 散列表扩容耗时很多,当遇到散列冲突时性能不稳定,尽管二叉查找树的性能不稳定但是在工程中最常用的平衡二叉查找树性能非常稳定时间复杂度稳定在O(logn)
  3. 尽管散列表查找操作时间复杂度是常量级的但是因为哈希冲突的存在这个常量不一定比logn小,因此实际查找速度可能不一定比O(logn)快,加上哈希函数的耗时,不一定要比平衡二叉查找树的效率高。
  4. 散列表的构造比二叉查找树要复杂,需要考虑的东西很多。比如散列函数的设计、冲突解决办法、扩容、缩容等。平衡二叉查找树只需要考虑平衡性这一个问题,而且这个问题的解决方案比较成熟、固定。
  5. 为了避免过多的散列冲突,散列表装载因子不能太大,特别是基于开放寻址法解决冲突的散列表,不然会浪费一定的存储空间。

综合这几点,平衡二叉查找树在某些方面还是优于散列表的,所以,这两者的存在并不冲突。我们在实际的开发过程中,需要结合具体的需求来选择使用哪一个。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值