形态学笔记:侵蚀+膨胀+开运算+闭运算+形态学梯度+顶帽运算+黑帽运算

形态学

一般在二值图上操作
输入:原图、操作结构内核

简单阈值

对于每个像素,应用相同的阈值。如果像素值小于阈值,则将其设置为0,否则将其设置为最大值
原图–>灰度图–>二值图

logo = cv2.imread('./fans.jpg')
# 参数1 被转换的图像
# 参数2 原图转为灰度图
logo_gray = cv2.cvtColor(logo, cv2.COLOR_BGR2GRAY)
# 转为二值图
# 参数1 灰度图
# 参数2 阈值 小于阈值为0
# 参数3 大于阈值为maxval
# 参数4 类型    cv2.THRESH_BINARY   cv2.THRESH_OTSU 会自适应阈值
# retval, logo_binary = cv2.threshold(logo_gray, 100, 255, cv2.THRESH_BINARY)
retval, logo_binary = cv2.threshold(logo_gray, 100, 255, cv2.THRESH_OTSU)

侵蚀

内核在原图上滑动,内核框住的元素全为1才为1(保留1),否则为0(侵蚀)

import cv2
import numpy as np

img = cv2.imread('./imgs/py_black.png')

# kernel = np.ones((5, 5))
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
# 参数1 原图
# 参数2 核
# 参数3 侵蚀次数
erode_img = cv2.erode(img, kernel, iterations=1)
cv2.imshow('1', img)
cv2.imshow('2', erode_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

原图

image.png

侵蚀后

image.png

膨胀

内核在原图上滑动,内核框住的元素只要有1为1(膨胀),否则为0(保留0)

import cv2
import numpy as np

img = cv2.imread('./imgs/py_black.png')
# kernel = np.ones((5, 5))
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
# 参数1 原图
# 参数2 核
# 参数3 膨胀次数
dilate_img = cv2.dilate(img, kernel, iterations=1)
cv2.imshow('1', img)
cv2.imshow('2', dilate_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

原图

image.png

膨胀后

image.png

开运算

侵蚀+膨胀
先侵蚀后膨胀,用于消除噪声

import cv2
import numpy as np

img = cv2.imread('./imgs/py_open.png')
# kernel = np.ones((5, 5))
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
# 参数1 原图
# 参数2 形态操作的类型
# 参数3 核
# 参数3 侵蚀次数
open_img = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel, iterations=1)
# erode_img = cv2.erode(img, kernel, iterations=1)
# open_img = cv2.dilate(erode_img, kernel, iterations=1)

cv2.imshow('1', img)
cv2.imshow('2', open_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

原图

image.png

开运算后

image.png

闭运算

膨胀+侵蚀
先膨胀后侵蚀,用于消除图像中小的暗点

import cv2
import numpy as np

img = cv2.imread('./imgs/py_close.png')
# kernel = np.ones((5, 5))
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
# 参数1 原图
# 参数2 形态操作的类型
# 参数3 核
# 参数3 侵蚀次数
close_img = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel, iterations=1)
# dilate_img = cv2.dilate(img, kernel, iterations=1)
# close_img = cv2.erode(dilate_img, kernel, iterations=1)

cv2.imshow('1', img)
cv2.imshow('2', close_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

原图

image.png

闭运算后

image.png

形态学梯度

原图 - 侵蚀 = 轮廓线

import cv2
import numpy as np

img = cv2.imread('./imgs/py_black.png')
# kernel = np.ones((5, 5))
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
# 参数1 原图
# 参数2 形态操作的类型
# 参数3 核
# 参数3 侵蚀次数
gradient_img = cv2.morphologyEx(img, cv2.MORPH_GRADIENT, kernel, iterations=1)

cv2.imshow('1', img)
cv2.imshow('2', gradient_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

原图

image.png

梯度后

image.png

顶帽运算

原图 - 开运算(侵蚀+膨胀) = 外部噪点

import cv2
import numpy as np

img = cv2.imread('./imgs/py_open.png')
# kernel = np.ones((5, 5))
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
# 参数1 原图
# 参数2 形态操作的类型
# 参数3 核
# 参数3 侵蚀次数
tophat_img = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel, iterations=1)

cv2.imshow('1', img)
cv2.imshow('2', tophat_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

原图

image.png

顶帽后

image.png

黑帽运算

原图 - 闭运算(膨胀+侵蚀) = 内部噪点

import cv2
import numpy as np

img = cv2.imread('./imgs/py_close.png')
# kernel = np.ones((5, 5))
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
# 参数1 原图
# 参数2 形态操作的类型
# 参数3 核
# 参数3 侵蚀次数
blackhat_img = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel, iterations=1)

cv2.imshow('1', img)
cv2.imshow('2', blackhat_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

原图

image.png

黑帽后

image.png

  • 7
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

饭碗、碗碗香

感谢壮士的慷概解囊!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值