图像数学形态学的基本原理与代码实现(腐蚀、膨胀、开闭运算)
文章目录
1. 集合基础
集合是由一个或多个确定元素所构成的整体。
- 空集:确定元素如果不存在,就是空集。常记为 ∅ \varnothing ∅
- 并集:所有元素合并到一起的集合。常记为 A ∪ B A\cup B A∪B
- 交集:相同元素的集合。常记为 A ∩ B A\cap B A∩B
- 补集:不属于该集合元素组成的集合。常记为 A c A^{\mathrm{c}} Ac
-
包含:A 的元素全部在 B 中; A ∩ B = A A\cap B = A A∩B=A; A ⊆ B A\subseteq B A⊆B
-
相离:A 与 B 没有共同元素; A ∩ B = ∅ A\cap B = \varnothing A∩B=∅;
-
相交:A 与 B 相同元素; A ∩ B ≠ ∅ A\cap B \neq \varnothing A∩B=∅
-
映像:所有元素取反组成的集合;记为 A ^ = { x ∣ x = − a , a ∈ A } \hat A = \{x| x=-a,a\in A\} A^={ x∣x=−a,a∈A}
-
平移:所有元素平移 x,记为 ( A ) x = { y ∣ y = a + x , a ∈ A } (A)_x = \{y|y = a+x,a\in A\} (A)x={ y∣y