机器学习 第8章 集成学习 概念总结和简单实践

一 解决的问题

集成学习,就是把前几章的经典可推导的模型结合起来,将一系列学习器的结果加工一下形成最终结果的学习模型。

为什么将弱学习器结合起来能够提升准确率呢?

其实准确地说,并不是随意将学习器组合起来就有提升准确度的效果,而是要求这些弱学习器要有一定的准确度,并且学习器之间要有差异,这样才能保证组合起来能够减少错误率。而且,基于误差-分歧分解的分析,得出结论,个体学习器准确性越高,多样性越大,则集成效果越好。

怎样保证学习器准确性又好,差异度也大呢?

一种方法是先训练一个模型,然后对于这个模型出错的样本重点关注,再基于这些样本,训练另一个模型,以此迭代,直到最后得到符合要求的准确率,这就是boosting。由此获得的模型之间有强依赖性,模型属于串行生成。这样得到的模型其实是在不断优化失误率,降低偏差。

另一种方法是先把样本空间切分成小的子空间,这样各空间的数据不同,然后每个子空间训练出一个最佳模型,再把这些模型组合起来,得到最终模型。这种训练的方法可以并行处理,模型之间也不存在强依赖关系,称为bagging。Bagging主要关注降低方差,因此,在易受样本扰动的模型上效用更好,比如决策树,神经网络。

怎样增强多样性?

对训练数据来说,就这么一份,怎么训练出多个模型,还让它们具有差异?通常做法是加入扰动。

比如,在样本数据上加入扰动,可以将样本数据划分为多份子空间;

在属性上也可以加入扰动,每次取样仅抽取一定比例的属性;

还可以输出扰动,比如将二分类转化为回归输出构建个体学习器,然后结合的时候再转化为最终分类结果;

对于比较复杂的网络,还可以设置不同的参数,构建不同学习器。

二 概念总结

三 习题简单实践

习题8.3 以不剪枝决策树为基学习器,在3.0α数据上用adaboost训练集成,对比图8.4

import numpy as np
import matplotlib.pyplot as plt

from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier

data = np.loadtxt('./CH3-3watermeleondata.csv', delimiter=',')

X = data[:,0:2]
y = data[:,2]

clf = AdaBoostClassifier(DecisionTreeClassifier(splitter='best'), n_estimators=3,random_state=0)
clf.fit(X,y)

steplength = 0.002  # 将训练出的模型用于高密度的预测,形成一条边界,就是分类的边界线
x_min, x_max = X[:, 0].min() - 0.1, X[:, 0].max() + 0.1
y_min, y_max = X[:, 1].min() - 0.1, X[:, 1].max() + 0.1
xmesh = np.arange(x_min,x_max,steplength)
ymesh = np.arange(y_min, y_max,steplength)
xx, yy = np.meshgrid(xmesh,ymesh)

Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) #这里预测出来的Z是行向量,也需要重整理成矩阵形式
Z = Z.reshape(xx.shape)
f2 = plt.figure() 
plt.title('Classfication boundary output with 3 DecisionTree')
plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)
# Plot also the training points
plt.scatter(X[y == 0,0], X[y == 0,1], marker = 'v', color = 'k', s=100, label = 'bad') 
plt.scatter(X[y == 1,0], X[y == 1,1], marker = 'o', color = 'g', s=100, label = 'good')

这里设置3个决策树分类器,得到的结果如下:

可以看到决策树的分类边界的确是线性的,设置5个,11个分类器,得到的结果与3个的没有什么区别。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值