金融数据分析08

文章探讨了在构建评分卡模型时数据预处理的重要步骤,包括特征信息度的计算以确定特征的重要性,以及单变量和多变量分析在特征衍生和分箱策略中的应用。分箱技术用于减少数值变量的变异性和提高模型稳定性,而特征信息度则帮助识别有预测价值的变量。单变量分析专注于每个特征对目标变量的影响,而多变量分析考虑了特征间的相互作用。
摘要由CSDN通过智能技术生成

申请评分卡数据预处理与特征衍生

分箱的注意点

 

特征信息度的计算和意义

 

 

 

单变量分析

 

 

 

 

 

 

多变量分析

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值