第一回:Matplotlib初相识
Matplotlib是一个Python 2D绘图库,能够以多种硬拷贝格式和跨平台的交互式环境生成出版物质量的图形,用来绘制各种静态,动态,交互式的图表
一、认识matplotlib
Matplotlib的图像是画在figure(如windows,jupyter窗体)上的,每一个figure又包含了一个或多个axes(一个可以指定坐标系的子区域)。最简单的创建figure以及axes的方式是通过pyplot.subplots命令,创建axes以后,可以使用Axes.plot绘制最简易的折线图。
二、一个最简单的绘图例子
1.导包
代码如下(示例):
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
fig, ax = plt.subplots() # 创建一个包含一个axes的figure
ax.plot([1, 2, 3, 4], [1, 4, 2, 3]) # 绘制图像
和MATLAB命令类似,你还可以通过一种更简单的方式绘制图像,matplotlib.pyplot方法能够直接在当前axes上绘制图像,如果用户未指定axes,matplotlib会帮你自动创建一个。所以上面的例子也可以简化为以下这一行代码:
plt.plot([1, 2, 3, 4], [1, 4, 2, 3])
2.Figure的组成
现在我们来深入看一下figure的组成。通过一张figure解剖图,我们可以看到一个完整的matplotlib图像通常会包括以下四个层级,这些层级也被称为容器(container)。
Figure:顶层级,用来容纳所有绘图元素
- Axes:matplotlib宇宙的核心,容纳了大量元素用来构造一幅幅子图,一个figure可以由一个或多个子图组成
- Axis:axes的下属层级,用于处理所有和坐标轴,网格有关的元素
- Tick:axis的下属层级,用来处理所有和刻度有关的元素
三、两种绘图接口
matplotlib提供了两种最常用的绘图接口:
- 显式创建figure和axes,在上面调用绘图方法,也被称为OO模式(object-oriented style)
- 依赖pyplot自动创建figure和axes,并绘图
使用第一种绘图接口,是这样的:
x = np.linspace(0, 2, 100)
fig,ax = plt.subplots()
ax.plot(x, x, label='linear')
ax.plot(x, x**2, label='quadratic')
ax.plot(x, x**3, label='cubic')
ax.set_xlabel('x label')
ax.set_ylabel('y label')
ax.set_title("Simple Plot")
ax.legend()
而如果采用第二种绘图接口,绘制同样的图,代码是这样的:
x = np.linspace(0, 2, 100)
plt.plot(x, x, label='linear')
plt.plot(x, x**2, label='quadratic')
plt.plot(x, x**3, label='cubic')
plt.xlabel('x label')
plt.ylabel('y label')
plt.title("Simple Plot")
plt.legend()
plt.show()
四、总结
**注:**一个可视化的例子:
a = np.arange(1,5)
b = a**2
c = a**3
#fontsize字号,fontfamily字体名称,fontstyle字体风格
fig, ax = plt.subplots(figsize=(14,7))
# fig,ax = plt.subplots(2,1,figsize= (14,7))
ax.plot(a,b,'k--',label='a')
ax.plot(b,a)
ax.set_xlabel('x_label',fontsize=15,fontfamily='sans-serif',fontstyle='italic')
ax.set_ylabel('y_label',fontsize='x-large',fontstyle='oblique')
ax.set_title('Title',fontsize=18)
ax.set_xlim(0,16)
ax.set_xticks(range(0,16,1))
ax.grid(c='red',axis='y')
ax.legend()