选择需求管理工具

如果你在2022年寻找管理需求的新方法,但不确定从何入手,那么选择一款现代化的需求管理工具可能是正确的下一步。越来越多的组织开始探索并采纳那些能够管理设计联接系统所带来的复杂性的产品开发解决方案。

需求是使流程顺畅运行的基础,也是你的重要项目所必须的输入。在生命周期的早期阶段,有效地管理变更和改良流程将大幅度减少后期的质量问题,以及许多项目中常见的不稳定性。而选择正确的需求管理解决方案可以在这个过程中起到决定性的作用。

正确的需求管理解决方案不仅可以帮助管理产品、系统和软件开发的复杂性,它还可以帮助团队实现以下目标:

  • 更快地构建更高质量的产品
  • 更有效地进入市场
  • 更早地抓住机会

在选择需求管理解决方案时,另一个要考虑的因素是它是否允许”活动需求”。”活动需求”正成为创新经济中的竞争优势。如果你的需求管理解决方案不支持”活动需求”,你的团队可能会落后。

静态需求和动态需求的区别

静态需求和活动需求的区别在于,活动需求解决了问题的根本原因,从而提高了生产效率,加快了交付速度,并降低了风险。这涵盖了所有可能产生负面结果的复杂产品、系统和软件交付生命周期领域,这些领域都应积极管理以降低出现问题的可能性。

  • 性能:产品无法执行规定功能 
  • 质量:产品在发布后被客户发现有缺陷 
  • 延迟:产品发布的截止日期被错过 
  • 符合需求:产品无法满足客户的需求 
  • 合规性差距:较晚发现的差距和修复的高昂成本 
  • 监管行动:产品未获得发布批准或在发布后被召回

无论你正在开发的是产品、系统还是软件,都可以参考PingCode产品管理方案,以确保你选择的需求管理解决方案能够满足所有你的需求,从而提高工作效率、减少成本高昂的返工,以及降低产品开发过程中可能产生的负面影响。

需求管理

 需求管理指南: 

需求管理: 需求管理主要内容  |  需求管理的重要性  |  采用敏捷方法进行需求管理  |  如何克服需求管理的 5 大挑战  |  更多 

需求编写: 功能需求的示例和模板  |  采用 EARS 方法来改进需求工程  |  如何编写一份优秀的产品需求文档(PRD)  功能性需求与非功能性需求的区别  |  有效需求的特征  |  更多 

需求收集和管理流程: 需求工程概述  |  产品团队的需求分析指南  |  敏捷产品团队的 11 种需求收集技巧  |  定义和实施需求基线  |  更多  需求的可追溯性: 什么是需求可追溯性  |  可追溯性在现代产品和系统开发中的关键作用  |  如何创建和使用需求追溯矩阵  |  更多 

需求确认和验证: 产品团队的需求验证和确认  |  更多 

需求管理领域文章:

 做好需求分析的4大关键认知  |  盘点国内9款热门需求管理系统  |  构建产品路线图的方法与工具  |  做好需求优先级判断的7种主流模型  |  采用敏捷方法进行需求管理  | 更多

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值