嘿,记得给“机器学习与推荐算法”添加星标
本周跟大家分享一篇快手公司与中科大合作产出的资源型论文,即发布了一个几乎全是观测值的稠密数据集KuaiRec,该数据集包含了1411个用户对3327个短视频的交互行为,稠密度高达99.6%(一般推荐系统公开数据集的稠密度在1%以下)。该数据集可用于离线的A/B测试,以及可用于无偏推荐、交互式/对话推荐或者是基于强化学习推荐等方向。
论文:https://arxiv.org/abs/2202.10842
数据:https://rec.ustc.edu.cn/share/598635c0-9585-11ec-8259-414ede1f8d4f
代码:http://m6z.cn/5U6xyQ
目前大多数离线评测的推荐系统数据集会存在高度数据稀疏(Highly sparse)与