KuaiRec | 快手发布首个稠密度高达99%的推荐数据集, 可用于多种推荐系统方向研究...

快手与中科大合作推出KuaiRec数据集,该数据集稠密度达99.6%,可用于无偏推荐、交互式推荐等研究。数据集包括Small和Big两个版本,提供用户对短视频的全量交互行为,解决了推荐系统数据稀疏和偏置问题。论文和数据集链接已给出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

嘿,记得给“机器学习与推荐算法”添加星标


本周跟大家分享一篇快手公司与中科大合作产出的资源型论文,即发布了一个几乎全是观测值的稠密数据集KuaiRec,该数据集包含了1411个用户对3327个短视频的交互行为,稠密度高达99.6%(一般推荐系统公开数据集的稠密度在1%以下)。该数据集可用于离线的A/B测试,以及可用于无偏推荐、交互式/对话推荐或者是基于强化学习推荐等方向。

4d899afd76f88a06b081e5c5d7c4d175.png


论文:https://arxiv.org/abs/2202.10842

数据:https://rec.ustc.edu.cn/share/598635c0-9585-11ec-8259-414ede1f8d4f

代码:http://m6z.cn/5U6xyQ

目前大多数离线评测的推荐系统数据集会存在高度数据稀疏(Highly sparse)与

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值