当Copilot融入芯片设计和验证
芯片设计的Copilot提供了一条高效的知识共享路径,极大提升了工程资源的生产力。例如,集成于工具中的Copilot能够即时回应查询,用户无需暂停工作去搜索解决方案,或者翻阅众多文档,又或者联系应用工程师。
随着Copilot变得更加智能和普及,它将深入融合到芯片的设计和验证流程中。Copilot的加入使得原本需要数小时乃至数天的工作,如今仅需几秒钟便可完成。
对于那些拥有丰富设计知识的大型知名企业来说,GenAI可以提供巨大的发展潜力。行业内的佼佼者正在筹划部署自家的Copilot系统,以期将过去数十年积累的珍贵技术、架构和特有领域数据转化为更大的价值。 同时,GenAI预计将促进芯片设计流程的广泛普及,帮助新兴芯片企业更迅速地创新和扩张,让它们能够集中精力打造自己的核心竞争力,同时充分利用行业标准的参考流程和知识资源进行优化。
芯片设计将更加以软件为中心
随着GitHub Copilot等人工智能软件开发辅助工具的快速流行,至今年年初,这些工具已经协助编写了超过46%的新代码。现在,半导体硬件系统的设计也开始步入以软件为主导的发展轨道。GenAI有望深度融入芯片设计的各个阶段,包括设计构思、寄存器传输级(RTL)代码的编写、设计验证和实施等,实现整个系统的自动化,并由此颠覆传统芯片设计流程。
随着半导体行业的多种能力日臻成熟,届时,行业将有望突破现有的瀑布式芯片设计模式。例如,GenAI或将能够实现超高速的原型设计流程,为设计构思和搭建提供高度自动化的方案选择,并摒弃那些耗时且注重细节的辅助性工作,如验证覆盖率模型、复杂的断言或是构建随机约束测试桩等,以此显著提升设计的效率和节奏。
AI的经济门槛将加速AI硬件创新
在人工智能领域,高性能工作负载对算力的需求不断攀升,尤其体现在预训练的大型语言模型(LLM)上,这些模型依赖于尖端的AI超算系统和庞大的半导体芯片阵列。目前估算显示,深度神经网络的参数规模每两年激增逾200倍,这一指数级扩展势必加剧未来踏足AI领域的经济门槛。CPU、GPU、XPU和系统集成等领域的行业领军企业正逐步加大对创新架构的研发投入,以在功耗效率和总体拥有成本(TCO)上获得竞争力,增强其在AI时代的行业影响力。
面向人工智能的新型处理架构将持续涌现,包括备受瞩目的神经形态计算芯片、光计算机以及量子计算平台,这些技术的发展可能会使得人工智能经济门槛进一步提高。异构计算组件的系统级集成趋势是推动行业向Multi-Die系统演进的关键因素,并将加速推进纳米级别数字CMOS技术的研发。尽管这些创新计算平台主要针对数据中心的需求,但自主边缘计算技术仍旧在自动驾驶汽车、工业自动化以及个人计算方案等领域推动算力的集成,以传感器技术集成为核心,持续助力相关领域的技术创新与发展。