图片
摘要:苹果叶片病害智能诊断系统在农业科技和精准农业中扮演着极其重要的角色。此技术通过高效准确地识别不同的叶片病害,可以大幅提升农业生产的质量与效率。本文基于YOLOv8深度学习框架,通过13775张图片,训练了一个进行苹果叶片病害智能诊断的识别模型,可用于检测9种不同的苹果病害。并基于此模型开发了一款带UI界面的苹果叶片病害智能诊断系统,可用于实时识别场景中的苹果病害类型,更方便进行功能的展示。该系统是基于python与PyQT5开发的,支持图片、批量图片、视频以及摄像头进行识别检测。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末。
前言
苹果叶片病害智能诊断系统在农业科技和精准农业中扮演着极其重要的角色。此技术通过高效准确地识别不同的叶片病害,可以大幅提升农业生产的质量与效率。作为一种快速、无创的诊断工具,它可以帮助农民及时发现苹果园的病害情况,进而采取相应的防治措施,这对于减少作物损失、降低化学农药的使用以及保护生态环境都至关重要。
应用场景方面,该系统首先可以在苹果种植园区广泛部署。通过移动设备或装载在农用无人机上的相机收集叶片图像,系统将这些图像数据实时处理并识别出具体病害类型,从而使得农业管理人员可以进行有针对性的病害防控。
此外,它也适用于农业研究机构和农业扩展服务中,用于监测病害发展趋势和研究病害与环境因素的关系。
在科研领域,它有助于研究人员收集和分析大量数据,促进新型病害防治技术的开发。此系统还可以融入智能农业信息平台,为农户提供实时病害预警服务,让农户能更快作出反应,科学施肥和用药。
随着AI技术与物联网的结合,苹果叶片病害智能诊断系统的应用前景将愈加广阔,不仅助力提升农业生产水平,也是实现可持续农业发展的关键工具之一。
博主通过搜集苹果叶片病害的相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款界面简洁的苹果叶片病害智能诊断系统,可支持图片、批量图片、视频以及摄像头检测。
软件初始界面如下图所示:
图片
检测结果界面如下:
图片
1. 可进行9种不同苹果叶片诊断识别,分别为:['交链孢叶斑病','褐斑病','青枯病','灰斑病','健康','花叶病毒病','白粉病','锈病','疮痂病'];
2.支持图片、批量图片、视频以及摄像头检测;
3.界面可实时显示识别结果、置信度、用时等信息;
单个图片检测操作如下:点击打开图片按钮,选择需要检测的图片,就会显示检测结果。操作演示如下:
图片
批量图片检测操作如下:
点击
打开文件夹
按钮,
选择需要检测的文件夹
【注意是选择文件夹】,可进行
批量图片检测
,表格中会有所有图片的检测结果信息,
点击表格中的指定行,会显示指定行图片的检测结果
双击路径单元格,会看到图片的完整路径
。操作演示如下:
图片
点击
打开视频
按钮,打开选择需要检测的视频,就会自动显示检测结果。
图片
点击
打开摄像头
按钮,可以打开摄像头,可以实时进行检测,再次点击
摄像头
按钮,可关闭摄像头。
图片
YOLOv8是一种前沿的检测与识别技术,它基于先前YOLO版本在目标检测与识别任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,
可以在从 CPU 到 GPU 的各种硬件平台上运行
其主要网络结构如下:
图片
本文使用的
苹果叶片病害
数据集共包含
13775
张图片,分为
9个类别
,分别是:
['交链孢叶斑病','褐斑病','青枯病','灰斑病','健康','花叶病毒病','白粉病','锈病','疮痂病']
。部分数据集及类别信息如下:
图片
图片
图片数据集的存放格式如下,在项目目录中新建
datasets
目录,同时将分类的图片分为训练集与验证集放入
DiseaseData
目录下。
图片
数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:
在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练结束后,可以在
runs/
目录下找到训练过程及结果文件,如下所示:
图片
本文训练结果如下:
图片
图片
模型训练完成后,我们可以得到一个最佳的训练结果模型
best.pt
文件,在
runs/trian/weights
目录下。我们可以使用该文件进行后续的推理检测。
图片
图片检测代码如下:
执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
图片
以上便是关于此款苹果叶片病害智能诊断系统的原理与代码介绍。基于此模型,博主用python与Pyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、批量图片、视频及摄像头进行检测。
本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:
图片
注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境。