SwarmBrain: 通过大模型玩实时战略游戏《星际争霸II》

人工智能咨询培训老师叶梓 转载标明出处

实时战略(RTS)游戏如《星际争霸II》一直被视为测试和提升AI能力的绝佳平台。尽管基于强化学习(RL)的AI代理在《星际争霸II》中取得了显著进展,但它们在处理复杂环境时仍面临挑战。LLMs以其高层次的抽象能力和对复杂情境的理解能力,为AI代理提供了更全面的战场视角,从而可能提高其在复杂场景中的表现和适应性。

最近,来自宝马诚迈公司的研究团队在各种探索性任务中取得了显著成就,甚至超越了传统基于强化学习的方法。本文将探讨LLMs在执行《星际争霸II》游戏中实时战略任务的有效性,并介绍一个名为SwarmBrain的执行实时战略的嵌入式智能体。

SwarmBrain框架

SwarmBrain与《星际争霸II》环境交互的框架图

图1框架是理解SwarmBrain如何在实时战略游戏中运作的关键。

环境观察:SwarmBrain通过python-sc2 API接口获取游戏状态信息。这个接口充当了SwarmBrain与游戏环境之间的桥梁,提供了关于游戏内各种单位、建筑和资源的实时数据。

数据提取:从游戏环境中获取的原始数据是复杂且庞大的。SwarmBrain采用选择性提取过程,只提取对决策过程至关重要的数据。这有助于减少处理数据所需的计算资源,并提高决策速度。

数学计算:提取的数据经过一系列数学运算,转化为必要的参数。这些参数为SwarmBrain提供了对游戏状态的定量理解,比如资源数量、单位状态和敌人的位置等。

自然语言输入:将处理后的数据封装成自然语言描述,作为主宰智能矩阵(Overmind Intelligence Matrix)的输入。这种自然语言描述使得大型语言模型(LLM)能够理解和分析游戏状态。

策略制定:主宰智能矩阵基于输入的自然语言数据,制定战略指令。这些指令包括资源分配、扩张方向和攻击协调等。主宰大脑(Overmind Brain)和星际争霸II大脑(SC2 Brain)共同工作,将战略概念转化为可执行的命令。

命令执行:Swarm ReflexNet接收主宰智能矩阵的指令,并将其转化为具体的操作。这些操作包括单位移动、攻击和建筑建造等。Swarm ReflexNet确保这些操作能够快速、准确地执行。

反馈循环:执行的操作结果会反馈到SwarmBrain,形成闭环。这样,SwarmBrain可以根据最新的游戏状态调整其战略和战术,确保持续的适应性和有效性。

实时决

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能大模型讲师培训咨询叶梓

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值