OpenAI 官方宣布正式开源多Agent编排框架 Swarm!(Swarm框架概述、安装与使用教程、应用场景)

2024年10月12日,OpenAI宣布开源了一个全新的多智能体框架——Swarm,上线几小时便获得2.8k Star。

一、Swarm框架概述

Swarm框架被设计为一个实验性质的多智能体编排框架,旨在简化多智能体系统的构建、编排和部署工作,解决开发者在此领域面临的复杂挑战。Swarm框架的主要特性包括轻量化、易于使用和高度可定制性。Swarm框架的核心抽象概念包括智能体(Agent)和交接(Handoff)。

  • 智能体(Agent):每个Agent包含一组指令和工具,并能够在任何时刻将对话交接给另一个Agent。

  • 交接(Handoff):这是指Agent之间相互传递对话和执行任务的机制。

Swarm框架的轻量化特性使得代码简洁且易于上手,同时它的可扩展性允许开发者轻松扩展到大量Agent。Swarm框架的高度可定制性则允许根据不同的需求进行定制。最重要的是,Swarm框架几乎完全在客户端运行,并且像Chat Completions API一样,在调用之间不保存状态。

二、安装与使用

安装Swarm框架非常简单,只需一条命令:

pip install git+ssh://git@github.com/openai/swarm.git

接下来,可以通过简单的Python脚本来定义智能体并指定它们的行为:

from swarm import Swarm, Agent

client = Swarm()

def transfer_to_agent_b():
    return agent_b

agent_a = Agent(
    name="Agent A",
    instructions="You are a helpful agent.",
    functions=[transfer_to_agent_b],
)

agent_b = Agent(
    name="Agent B",
    instructions="Only speak in Haikus.",
)

response = client.run(
    agent=agent_a,
    messages=[{"role": "user", "content": "I want to talk to agent B."}],
)

print(response.messages[-1]["content"])

这段代码定义了两个智能体,并且用户的指令是与智能体B交谈。最终输出的消息将是Agent B按照Haiku诗歌形式给出的回答。

三、核心特性:轻量级与高效性的完美结合

Swarm框架的核心特性在于其轻量级与高效性的完美结合。具体来说,Swarm具有以下几个显著特点:

  1. 轻量级设计:Swarm框架采用了简洁明了的设计思路,避免了不必要的复杂性和冗余。这使得Swarm在运行时具有较低的内存占用和CPU消耗,从而提高了系统的整体性能。

  2. 高效性:Swarm通过优化智能体之间的通信和协调机制,实现了高效的任务执行。智能体之间可以快速地传递信息、共享资源和协同工作,从而提高了任务处理的效率和质量。

  3. 可扩展性:Swarm框架可以轻松扩展到大量智能体,满足复杂任务处理的需求。开发者可以根据实际需求增加智能体的数量,而无需对框架进行大规模的修改或重构。

  4. 高度可定制:Swarm框架提供了丰富的配置选项和API接口,允许开发者根据实际需求进行定制。开发者可以定义智能体的行为、能力、通信协议等,以满足特定应用场景的需求。

  5. 完全透明与细粒度控制:Swarm框架允许开发者完全控制上下文、步骤和工具调用。这提供了更高的透明度和控制粒度,使得开发者可以更容易地调试和优化系统。

四、Swarm框架的应用场景

Swarm框架最适合处理大量独立的功能和指令,这些功能和指令难以编码到单个提示中。它适用于多种场景,如天气查询智能体、航空公司的客户服务请求处理、客服机器人、帮助进行销售和退款的个人智能体等。

五、为什么选择Swarm?

Swarm框架在设计上是轻量级、可扩展且高度可定制的。它非常适合处理存在大量独立功能和指令的情况——这些功能和指令难以编码成单个提示词。如果开发者希望对上下文、步骤和工具调用进行完全透明和细粒度控制,那么Swarm将是最佳选择。

Swarm框架的发布标志着多智能体系统开发的一个新阶段。通过优化智能体的协调、执行和测试流程,Swarm使得开发者能够更加高效地管理、互动多个AI智能体。

六、结语

不过需要注意的是,目前该框架仍处于实验阶段,OpenAI 表示不会提供任何官方支持。但它为开发者探索多智能体系统提供了新的思路和工具。

项目地址:https://github.com/openai/swarm。


七、最后分享

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

5. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值