人工智能咨询培训老师叶梓 转载标明出处
传统的城市规划往往依赖于专业规划师的经验和判断,耗时耗力,且难以满足居民多样化的需求。近年来,大模型(LLMs)的崛起为城市规划领域带来了新的机遇。清华大学电子工程系的Zhilun Zhou及其团队在arXiv上发表的论文《Large Language Model for Participatory Urban Planning》中,提出了一种基于LLM的多智能体协作框架,用于模拟参与式城市规划过程,以生成满足居民多样化需求的城市用地规划。
参与式城市规划是一种现代城市规划的主流模式,它强调居民的积极参与。然而,这一模式面临诸多挑战,包括如何平衡不同居民的需求、如何高效地处理大量居民的参与过程等。Zhilun Zhou等人提出的解决方案是利用大模型创建模拟规划师和居民的智能体。通过精心设计的提示(prompts),这些智能体能在多智能体协作框架中模拟真实的规划过程。研究团队构建了一个框架,其中包括一个规划师智能体和数千个具有不同档案和背景的居民智能体。
方法

图 1 概述了研究者设计的参与式城市规划框架,核心在于通过智能体模拟实现居民和规划师的有效互动。初始阶段,规划师智能体基于专业知识提出土地使用草案。接着,城市区域被划分为多个社区,每个社区的居民智能体根据自身特点和需求参与讨论。利用鱼缸讨论机制,居民智能体分内外圈进行多轮讨论,以提高讨论效率并确保广泛意见的吸纳。讨论结果反馈给规划师智能体,促使其修订并优化土地使用计划。此过程循环进行,直至形成最终规划方案,确保了规划的包容性、动态性和居民满意度。
在研究者提出的参与式城市规划框架中,智能体角色的设计是至关重要的一环。这一环节的核心在于利用大模型(LLM)创建具有不同角色和任务的智能体,以模拟真实的城市规划参与者。这些智能体包括规划师和居民两种角色,这种设计确保了规划过程中能够充分考虑和平衡不同居民群体的利益和需求。