人工智能讲师大模型培训咨询讲师叶梓分享前沿论文:IoA让AI协作变得和人类一样简单
人工智能咨询培训老师叶梓 转载标明出处
多智能体框架在集成多样化的第三方智能体时面临挑战,这些框架通常依赖于自身生态系统内定义的智能体,并且在模拟分布式环境时受到限制,大多数框架仅限于单一设备设置。此外,这些框架通常依赖于硬编码的通信管道,限制了它们适应动态任务需求的能力。
为了解决这些问题,清华大学、北京大学、北京邮电大学和腾讯的研究人员共同提出了一种名为“智能体网络(Internet of Agents, IoA)”的新型框架。IoA通过提供一个灵活且可扩展的平台,使得基于大模型的多智能体协作成为可能。IoA引入了智能体集成协议、类似即时通讯的架构设计,以及动态的智能体组队和对话流控制机制。
想要掌握如何将大模型的力量发挥到极致吗?叶老师带您深入了解 Llama Factory —— 一款革命性的大模型微调工具(限时免费)。
1小时实战课程,您将学习到如何轻松上手并有效利用 Llama Factory 来微调您的模型,以发挥其最大潜力。
CSDN教学平台录播地址:https://edu.csdn.net/course/detail/39987
IoA的架构
IoA被设计成一个类似即时通讯应用的平台,支持不同智能体之间的无缝通信与协作。IoA通过解决现有多智能体系统的三个基本挑战:分布式智能体协作、动态自适应通信和异构智能体的集成。
IoA的核心由服务器和客户端两个主要组件构成。服务器作为中央枢纽,管理智能体的注册、发现和消息路由;客户端则为智能体提供必要的通信功能,并使其适应指定的协议。IoA采用了分层架构,包括交互层、数据层和基础层,共同促进智能体通过网络协作。
图1展示了IoA的概念分层架构设计。客户端和服务器的架构均包含这三个层次,分别负责不同的功能。
服务器架构的最顶层是交互层,管理智能体与系统之间的高级交互,包括智能体查询、群组设置和消息路由。数据层作为信息的支柱,处理关键系统信息的存储和管理,包括智能体注册和会话管理。基础层为服务器的操作提供必要的基础设施,包括数据持久化、网络通信和安全措施。
客户端架构与服务器相似,也包含交互层、数据层和基础层。交互层管理智能体在系统中的交互,包括团队形成和通信。数据层作为智能体的内存,维护与智能体操作相关的本地数据。基础层提供客户端操作的基本功能,包括智能体集成和网络通信。
IoA的有效性依赖于几个关键机制,这些机制协同工作,促进智能体的集成、团队形成、任务分配和结构化通信。
智能体注册与发现机制是IoA中协作交互的基础,使得不同智能体能够集成到系统中,并通过网络被其他智能体发现。
自主嵌套团队形成机制允许智能体根据任务需求动态形成团队,并为复杂任务创建嵌套子团队。图2展示了嵌套团队形成机制的简化示例,说明了任务分解和子团队的创建过程。
自主对话流控制机制通过有限状态机管理对话流,使得智能体能够协调通信并保持结构化对话。图3展示了对话流中的状态转换,包括讨论、同步任务分配、异步任务分配、暂停触发和结论。
任务分配与执行机制旨在高效地分配工作并管理简单和复杂任务的执行。任务在群组聊天的上下文中进行分配,并与对话流控制机制紧密相关。
IoA的自主嵌套团队形成和对话流控制机制的有效性依赖于综合的消息协议。该协议通过封装各种机制所需的必要信息,使智能体之间的通信和协作变得无缝。
图4展示了IoA在撰写关于智能体网络的研究论文这一复杂任务中的实际操作示例。展示了从团队形成到任务分配,再到最终的论文编辑和完善整个过程。
实验
实验部分旨在展示IoA在集成异构智能体方面的有效性和多功能性。实验设计覆盖了智能体异构性的不同方面,包括工具的多样性、架构的多样性、观察和行动空间的差异以及知识库的差异。这些实验的目标是展示IoA在促进异构智能体之间的协作以及在多种问题领域中的适应性。
在GAIA基准测试中,IoA展示了其在集成具有不同工具的智能体方面的能力。实验中,IoA实例化了四个基本的ReAct智能体,每个智能体都配备了独特的工具,如网络浏览器、代码解释器等。实验结果显示,IoA在所有难度级别上的表现均优于其他方法,尤其在更具挑战性的高级别任务中表现突出。
结果与分析:实验结果,表1,展示了IoA在GAIA基准测试中的性能,显示了IoA在不同难度级别上的表现。
此基准测试评估了IoA在集成和协调具有异构架构的智能体方面的能力。实验中,IoA成功集成了两个具有不同架构的最新技术第三方智能体AutoGPT和Open Interpreter。实验结果显示,IoA在所有任务类别中的性能均优于各自的独立智能体。
结果与分析:图5比较了IoA、AutoGPT和Open Interpreter在开放式指令基准测试中的胜率。
在具身AI领域的实验中,IoA展示了其在协调具有异构观察和行动空间的智能体方面的效能。使用RoCoBench基准测试,IoA在多个任务中的成功率超过了专门为此设计的Roco Dialog框架。
结果与分析:表2展示了不同任务完成的平均成功率和所需步骤。IoA在Cabinet、Sandwich和Sort任务上取得了完美的成绩,证明了其通信和协作机制的有效性。
在RAG任务中,IoA展示了其在管理知识异构性和促进智能体间有效通信方面的效能。实验结果表明,IoA在所有数据集上的表现通常超越或匹配基于GPT-4的表现,尤其是在异构知识场景中。
结果与分析:表3展示了IoA在所有数据集上的表现,通常超越或匹配GPT-4的表现。
为了评估IoA自主团队形成机制的精度,开发了一个包含625个不同任务和1500个虚拟智能体档案的基准测试。实验结果显示,IoA在常规团队形成和嵌套团队形成场景中均表现出高效,能够精确地匹配和排名相关智能体。
结果与分析:表4展示了团队形成机制的性能,包括Top@1和Top@10的召回率、平均排名(MR)和平均倒数排名(MRR)。
为了评估IoA的经济可行性和优化潜力,进行了成本分析。结果显示,IoA引入了每项任务额外的0.53美元的通信成本,导致总成本为0.99美元。分析中观察到的次优通信模式,如信息重复,导致了高沟通成本。通过手动移除重复内容并重新计算,通信成本几乎减少了50%,如表5所示。这一发现表明,尽管现代大模型非常适合作为聊天助手,但它们可能不是最有效的通信智能体。
https://arxiv.org/pdf/2407.07061