CIFAR-10 resnet18 炼丹指南

  • 使用预训练模型,Adam,learning rate 1e-4,效果不好,不过也可能是我不够耐心
  • Adam, learning rate 1e-5 40个epoch后loss是0.1,之后在0.9附近振荡,test acc只有58%
  • 可能是没什么耐心,看网上都是几百个epoch而我看了几个epoch就想换了
  • 发现了效果不好的原因,当loss从2下降到0.1后准确率仍然只有58%,认为是resnet18在32*32的图片上过拟合导致的,于是发现train的transform不够正则,所以增加了flip和crop,然后在服务器上使用adam优化器,1e-4的学习率,大约在50个epoch后就达到了80%的准确率,继续训练下去还能接着下降,因为此时loss还没有完全收敛,但是由于我的目的并不需要那么严格的准确率,训练到84%的准确率就停止了
  • 另外,在服务器上用多卡训练保存参数时发现会在state_dict里面包上一层module,在这个blog里找到了解决方案
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值