机器学习 学习总结 第四章 分类问题之逻辑回归的算法表达式

分类问题

在分类问题中,例如之前提到过的肿瘤良性恶性分类问题,可以将我们要预测的变量Y分为0 和 1 。 被标记为0 的也叫做负类标记为1的也叫做正类。 对于正类和负类的定义其实是任意的,没有硬性要求,主要看我们的需要。通常,负类表示某些缺少某样东西的东西,正类表示拥有某些我们需要的东西。接下来首先讨论的是0 1 分类问题

线性回归方程在解决分类问题中的弊端

首先用线性回归方程拟合分类问题数据集,可以预测出远大于1或远小于0的值。因为在分类问题中,Y的值只有0或1,而线性回归方程的取值范围一般为**-∞到+∞**,而且特征量的取值范围是连续的,且变化较大。当数据集中的数据比较多,变化比较大时可能出现预测值远大于1或远小于0的情况。
在分类问题中我们要做的就是找到一种算法,求出的假设函数的取值范围在0~1之间,而不会出现比1大或比1小的情况。 其中一种算法就是接下来讨论的逻辑回归算法

其次线性回归方程对数据集的分类可能并不理想,可能会将正类划入负类。

二元分类问题

二元分类问题中分类器的输出阈值通常设为0.5 。 如果假设函数输出的值大于等于0.5,则判断预测y值等于1,如果输出值小于等于0.5,则判断预测y值为0.
找到一个函数预测值在0~1之间。

逻辑回归问题

吴恩达老师在视频中给出的逻辑函数表达式及其图像如图:
逻辑函数表达式及函数图像
逻辑函数又称为S型函数。 取值范围为0~1. 而z的取值范围是(-∞,+∞)。
我们要做的就是用参数θ拟合数据

假设函数的输出解释

假设函数的作用是得出当输入一个特征量时预测y=1的可能性大小。以吴恩达老师课程中的肿瘤预测例子为例:
假设函数解释
当一个病人将肿瘤的size输入到假设函数中时,得到0.7,表示肿瘤是恶性肿瘤的概率是0.7,即y=1的概率是0.7. 用这个式子表示:hθ(x)=P(y=1|x;θ)。 在给定x的条件下,得出y=1的概率,这里的x就是特征量x,而这个概率的参数就是θ。
因此 P(y=0|x;θ) + P(y=1|x;θ) = 1 即同样条件下y为0的概率加上y为1的概率之和等于1.

————————————————————————

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 下面是一个简单的逻辑回归分类算法的 Python 代码示例: ```python import numpy as np class LogisticRegression: def __init__(self, learning_rate=0.01, num_iterations=100000, fit_intercept=True): self.learning_rate = learning_rate self.num_iterations = num_iterations self.fit_intercept = fit_intercept def sigmoid(self, z): return 1 / (1 + np.exp(-z)) def fit(self, X, y): if self.fit_intercept: intercept = np.ones((X.shape[0], 1)) X = np.hstack((intercept, X)) # 初始化权重 self.theta = np.zeros(X.shape[1]) for i in range(self.num_iterations): z = np.dot(X, self.theta) h = self.sigmoid(z) gradient = np.dot(X.T, (h - y)) / y.size self.theta -= self.learning_rate * gradient def predict_prob(self, X): if self.fit_intercept: intercept = np.ones((X.shape[0], 1)) X = np.hstack((intercept, X)) return self.sigmoid(np.dot(X, self.theta)) def predict(self, X, threshold=0.5): return self.predict_prob(X) >= threshold ``` 这我们定义了一个 `LogisticRegression` 类,它有以下几个方法: - `__init__`:初始化逻辑回归模型的超参数,包括学习率、迭代次数和是否拟合截距项。 - `sigmoid`:sigmoid 函数,用于将线性函数的输出转换为概率值。 - `fit`:训练模型的方法,使用梯度下降算法来更新权重。 - `predict_prob`:给定输入数据,返回模型预测的类别概率。 - `predict`:给定输入数据和阈值,返回模型预测的类别。 在使用时,首先需要创建一个 `LogisticRegression` 类的实例,然后调用 `fit` 方法来训练模型。训练完成后,可以使用 `predict_prob` 方法来预测类别的概率,或使用 `predict` 方法来预测具体的类别。 ### 回答2: 逻辑回归是一种常用的机器学习算法,用于解决二分类问题。其基本原理是利用线性回归模型的预测结果通过一个sigmoid函数转换成0或1的概率值进行分类预测。 以下是一个简单的机器学习逻辑回归分类算法代码: 1. 导入所需的库: ```python import numpy as np from sklearn.linear_model import LogisticRegression ``` 2. 准备数据: ```python X = np.array([[x1, x2], [x1, x2], ..., [x1, x2]]) # 特征矩阵,每行代表一个样本的特征向量 y = np.array([y1, y2, ..., yn]) # 标签向量,表示每个样本的类别 ``` 3. 创建逻辑回归模型对象: ```python model = LogisticRegression() ``` 4. 使用训练数据进行模型训练: ```python model.fit(X, y) ``` 5. 对新样本进行分类预测: ```python new_sample = np.array([x1, x2]) # 待预测的新样本的特征向量 predicted_class = model.predict([new_sample]) # 预测样本的类别 ``` 以上是一个简单的机器学习逻辑回归分类算法的代码实现。要注意的是,在实际应用中,可能需要进行特征工程、数据预处理、模型评估等步骤来提高分类效果。此外,可以通过调整模型的参数,如正则化系数等,来优化模型的性能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值