Python技术栈 ——工具与依赖包篇

一、工具使用

1.1 Jupyter notebook

运行方式

$ jupyter notebook

1.2 Pycharm自动导包

《pycharm设置自动导包》

二、常用依赖

2.1 conda环境创建

conda create -n 环境名 python=版本号

2.2 pandas

2.2.1 DataFrame和Series的区别

DataFrameSeries
文档地址DataFrameSeries
维度二维一维
RerferencesSeries vs. DataFrame in Pandas – Shiksha Online

2.2.2 DataFrame与numpy互转

# DataFrame --> numpy
data1 = pd.DataFrame(data={'col1': [1, 2], 'col2': [3, 4]})
print(data1)
print(data1.columns)
print(np.array(data1)) # Droping the column automaticaly

# numpy --> DataFrame
data2 = np.array([[1,2,3],
                  [4,5,6]])
print(pd.DataFrame(data=data2))

data1=
col1 col2
0 1 3
1 2 4
data1.columns=
Index([‘col1’, ‘col2’], dtype=‘object’)
np.array(data1)=
[[1 3]
[2 4]]
pd.DataFrame(data=data2)
0 1 2
0 1 2 3
1 4 5 6

2.3 matplotlib

//@TODO,此处会引用另一篇文章,该文章待完成,都问大模型吧

2.4 python中excel相关库

根据此文,选择xlwings做为操作excel的首选库
《可能是全网最完整的 Python 操作 Excel库总结!》

2.5 API快捷查询

要查看某个类有哪些方法和属性

dir(类名)

三、环境依赖管理

3.1 批量导出与安装环境依赖

如何配置环境,甚至是配置一个一模一样的环境,对于运行他人代码或者复现论文而言,都是非常重要的一环。
(1) 打开终端
(2) 切换至该Python项目的根目录或子目录,并激活该项目的虚拟环境
(3) 运行pip list --format=freeze > requirements.txt,那么依赖环境就导出好了。
(4) 反过来,激活该项目的虚拟环境并运行pip install -r requirements.txt则是安装,从我实际使用的体验上来说,对于python而言,使用虚拟环境更方便,可以隔离各个项目之间的环境依赖,让环境更清爽,但有一个问题是,为什么python没有其对应的类似maven的工具?毕竟如果两个项目分别用了不同的虚拟环境,但用到了同一个版本的依赖包,相当于要安装两遍,占用双倍的存储空间,而Java中,有maven可以导入依赖,项目只需要引用即可。

参考文章或视频链接
Maven for Python: Possible or Not?
Maven equivalent for python [closed] - stackoverflow
《精确管理Python项目依赖:自动生成requirements.txt的智能方法》- CSDN

3.2 管理环境依赖

参考文章或视频链接
相比 Pipenv,Poetry 是一个更好的选择

3.3 发布本地Python项目作为依赖

我开发好了一个python项目,如何发布呢?
我想把我开发好的python项目,发布到本地的python环境中如何做?
所以python的依赖包都是以源码形式发布的吗?

参考文章或视频链接
[1] 《打包发布自己的第一个 Python 项目(包)》
[2] What is setup.py in Python?

3.4 Pycharm中配置pip镜像源

参考文章或视频链接
[1] 《pycharm venv环境如何配置pip源》

References

参考文章或视频链接
《python数据分析学习笔记之matplotlib、numpy、pandas》
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值