Python技术栈 ——工具与依赖包篇
一、工具使用
1.1 Jupyter notebook
运行方式
$ jupyter notebook
1.2 Pycharm自动导包
二、常用依赖
2.1 conda环境创建
conda create -n 环境名 python=版本号
2.2 pandas
2.2.1 DataFrame和Series的区别
DataFrame | Series | |
---|---|---|
文档地址 | DataFrame | Series |
维度 | 二维 | 一维 |
Rerferences | Series vs. DataFrame in Pandas – Shiksha Online |
2.2.2 DataFrame与numpy互转
# DataFrame --> numpy
data1 = pd.DataFrame(data={'col1': [1, 2], 'col2': [3, 4]})
print(data1)
print(data1.columns)
print(np.array(data1)) # Droping the column automaticaly
# numpy --> DataFrame
data2 = np.array([[1,2,3],
[4,5,6]])
print(pd.DataFrame(data=data2))
data1=
col1 col2
0 1 3
1 2 4
data1.columns=
Index([‘col1’, ‘col2’], dtype=‘object’)
np.array(data1)=
[[1 3]
[2 4]]
pd.DataFrame(data=data2)
0 1 2
0 1 2 3
1 4 5 6
2.3 matplotlib
//@TODO
,此处会引用另一篇文章,该文章待完成,都问大模型吧
2.4 python中excel相关库
根据此文,选择xlwings
做为操作excel的首选库
《可能是全网最完整的 Python 操作 Excel库总结!》
2.5 API快捷查询
要查看某个类有哪些方法和属性
dir(类名)
三、环境依赖管理
3.1 批量导出与安装环境依赖
如何配置环境,甚至是配置一个一模一样的环境,对于运行他人代码或者复现论文而言,都是非常重要的一环。
(1) 打开终端
(2) 切换至该Python项目的根目录或子目录,并激活该项目的虚拟环境
(3) 运行pip list --format=freeze > requirements.txt
,那么依赖环境就导出好了。
(4) 反过来,激活该项目的虚拟环境并运行pip install -r requirements.txt
则是安装,从我实际使用的体验上来说,对于python而言,使用虚拟环境更方便,可以隔离各个项目之间的环境依赖,让环境更清爽,但有一个问题是,为什么python没有其对应的类似maven的工具?毕竟如果两个项目分别用了不同的虚拟环境,但用到了同一个版本的依赖包,相当于要安装两遍,占用双倍的存储空间,而Java中,有maven可以导入依赖,项目只需要引用即可。
参考文章或视频链接 |
---|
Maven for Python: Possible or Not? |
Maven equivalent for python [closed] - stackoverflow |
《精确管理Python项目依赖:自动生成requirements.txt的智能方法》- CSDN |
3.2 管理环境依赖
参考文章或视频链接 |
---|
相比 Pipenv,Poetry 是一个更好的选择 |
3.3 发布本地Python项目作为依赖
我开发好了一个python项目,如何发布呢?
我想把我开发好的python项目,发布到本地的python环境中如何做?
所以python的依赖包都是以源码形式发布的吗?
参考文章或视频链接 |
---|
[1] 《打包发布自己的第一个 Python 项目(包)》 |
[2] What is setup.py in Python? |
3.4 Pycharm中配置pip镜像源
参考文章或视频链接 |
---|
[1] 《pycharm venv环境如何配置pip源》 |
References
参考文章或视频链接 |
---|
《python数据分析学习笔记之matplotlib、numpy、pandas》 |