在二叉树的传统里,用p指代左子树,用q指代右子树,这个原因是为什么呢?我以为,将pq两个字母里的圈圈视作节点,p那一撇就是左子树的延伸,q那一捺就是右子树的延伸,所以其实是按象形的意义来命名的,这比left和right还要直观,因此,bd也可以认为是倒过来的二叉树的表示法。
1. 二叉树的右视图
题目链接:二叉树的右视图 - leetcode
题目描述:
给定一个二叉树的 根节点root
,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。
题目归纳:
右视图 = 右边的侧视图
解题思路:
解法: 二叉树的右视图 - leetcode官方题解
(1) 从左到右层序遍历。记录层序遍历的最后一个node,即为右视图看到的第一个node。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def rightSideView(self, root: Optional[TreeNode]) -> List[int]:
rightmost_value_at_depth = dict()
max_depth = -1
# deque 数据类型来自于collections 模块,支持从头和尾部的常数时间 append/pop 操作。
# deque([1,2,3]) 的用法类似于 list([1,2,3])
# 非传统层序遍历写法,只有1层循环,缺点是层和层界限不清,优点是写起来快
queue = deque( [(root,0)] ) # deque = double-ended queue,双向队列。该队列的最小单元是(node,node_depth)
while queue:
node, depth = queue.popleft() # 若使用 Python 的 list,通过 list.pop(0) 去除头部会消耗 O(n) 的时间。
if node:
# 维护最大深度
max_depth = max(max_depth, depth)
# 由于每一层最后一个访问的节点才是答案,因此需要不断更新深度信息
rightmost_value_at_depth[depth] = node.val
queue.append((node.left, depth+1))
queue.append((node.right, depth+1))
# 构造从上到下的右视图结果
ans = []
for depth in range(max_depth+1):
ans.append(rightmost_value_at_depth[depth])
return ans
2. 二叉树的层平均值
题目链接:二叉树的层平均值 - leetcode
题目描述:
给定一个非空二叉树的根节点root
, 以数组的形式返回每一层节点的平均值。与实际答案相差 10-5 以内的答案可以被接受。
题目归纳:
层序遍历+求平均值
解题思路:
解法: 二叉树的层平均值 - leetcode官方题解
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def averageOfLevels(self, root: Optional[TreeNode]) -> List[float]:
# 层序遍历
if not root: return []
queue = deque([root])
ans = []
Sum = 0
while queue:
lenq = len(queue)
Sum = 0
# 取出该层的节点,并计算平均值
for i in range(lenq):
node = queue.popleft()
Sum += node.val
if node.left: queue.append(node.left)
if node.right: queue.append(node.right)
ans.append(float(Sum / lenq))
return ans
3. 二叉树的层序遍历
题目链接:二叉树的层序遍历 - leetcode
题目描述:
给你二叉树的根节点root
,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。
题目归纳:
就是原始的层序遍历
解题思路:
解法: 二叉树的层序遍历 - leetcode官方题解
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def levelOrder(self, root: Optional[TreeNode]) -> List[List[int]]:
if not root: return []
ans = []
queue = [root]
# 传统的层序遍历写法:有2层循环
while len(queue) > 0:
# 当前层的节点个数
curr_layer_len = len(queue)
ans.append([])
for i in range(curr_layer_len):
node = queue.pop(0)
ans[-1].append(node.val)
if node.left: queue.append(node.left)
if node.right: queue.append(node.right)
return ans
4. 二叉树的锯齿形层序遍历
题目链接:二叉树的锯齿形层序遍历 - leetcode
题目描述:
给你二叉树的根节点root
,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。
题目归纳:
层序遍历不要动,取元素的队列来回折返即可。
解题思路:
解法: 二叉树的锯齿形层序遍历 - leetcode官方题解
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def zigzagLevelOrder(self, root: Optional[TreeNode]) -> List[List[int]]:
if not root: return []
left_to_right = False # Flag变量. True表示从左往右遍历,False表示从右往左遍历
ans = []
queue = deque([root])
while queue: # 遍历列表
lenq = len(queue)
layer = deque([]) # 取元素的双端队列,左右折返放置元素
for i in range(lenq): # 遍历该层节点
node = queue.popleft() # 队头
if left_to_right:
layer.appendleft(node.val) # 往双端队列的左边插入
if node.left: queue.append(node.left) # 记得,一直都是先append(left)再append(right)
if node.right: queue.append(node.right)
else: # right_to_right
layer.append(node.val) # 往双端队列的右边插入
if node.left: queue.append(node.left)
if node.right: queue.append(node.right)
ans.append(list(layer)) # 双向链表deque转换成list
left_to_right = not left_to_right
return ans