实验五:正则化线性回归、偏差 V.S.方差
一、实验目的
实现正则化线性回归,并用它来研究具有不同偏差-方差性质的模型。
二、实验环境
Window10,Octave
三、实验步骤/过程
1.正则化线性回归:
1.1可视化数据集:可视化包含水位x变化和大坝流出水量y的历史记录的数据集。
1.2正则化线性回归损失函数:在linearRegCostFunction.m 中添加代码:
1.3正则化线性回归的梯度:在linearRegCostFunction.m 中添加代码:
1.4拟合线性回归:ex5.m运行 trainLinearReg.m 中的代码来计算的最优的θ。这个训练函数将会使用fmincg来优化损失函数。
2.偏差-方差:在learningCurve.m中添加代码:
3.多项式回归:
3.1学习多项式回归:在polyFeatures.m中添加代码:
3.2使用交叉验证集选择λ:在validationCurve.m中添加代码:
四、实验结果
1.1可视化数据集:
1.2正则化线性回归损失函数:
1.3正则化线性回归的梯度:
1.4拟合线性回归:
2.偏差-方差:
3.1学习多项式回归:
3.2使用交叉验证集选择λ: