机器学习实验五正则化线性回归、偏差 V.S.方差

实验五:正则化线性回归、偏差 V.S.方差

一、实验目的

实现正则化线性回归,并用它来研究具有不同偏差-方差性质的模型。

二、实验环境

Window10,Octave

三、实验步骤/过程

1.正则化线性回归:
1.1可视化数据集:可视化包含水位x变化和大坝流出水量y的历史记录的数据集。
1.2正则化线性回归损失函数:在linearRegCostFunction.m 中添加代码:
在这里插入图片描述

1.3正则化线性回归的梯度:在linearRegCostFunction.m 中添加代码:
在这里插入图片描述

1.4拟合线性回归:ex5.m运行 trainLinearReg.m 中的代码来计算的最优的θ。这个训练函数将会使用fmincg来优化损失函数。
2.偏差-方差:在learningCurve.m中添加代码:
在这里插入图片描述

3.多项式回归:
3.1学习多项式回归:在polyFeatures.m中添加代码:
在这里插入图片描述

3.2使用交叉验证集选择λ:在validationCurve.m中添加代码:
在这里插入图片描述

四、实验结果

1.1可视化数据集:
在这里插入图片描述

1.2正则化线性回归损失函数:
在这里插入图片描述

1.3正则化线性回归的梯度:
在这里插入图片描述

1.4拟合线性回归:
在这里插入图片描述

2.偏差-方差:
在这里插入图片描述

3.1学习多项式回归:
在这里插入图片描述

3.2使用交叉验证集选择λ:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值