概要
NTC热敏电阻在许多场景下是进行温度测量的首选器件之一,但其非线性特性需要在采样后进行查表、拟合等软件处理,这通常不复杂,很容易做到,但有些场景下若能得到一个线性的温度-电压关系,可以拓宽NTC的应用,如无法使用MCU的场景、或者需要利用NTC对电路中的器件做温度补偿等,一个线性温度电压关系更方便硬件上的电路搭建、处理。
文章目录
一、NTC热敏电阻的非线性特征
NTC热敏电阻的阻值一般与温度呈负相关,即随着温度的升高阻值会减小。我当前使用的NTC其β值的典型值为3940K,在25℃时阻值典型值为100KΩ。以下是该热敏电阻在0-60℃区间上的阻值温度变化曲线:
横坐标为温度(℃),纵坐标为阻值(Ω)。可见其非线性特征非常明显。
热敏电阻的阻值与温度之间的关系式为:
R N T C = R 0 × e β ( 1 T − 1 T 0 ) (1) {R_{NTC}} = {R_0} \times {e^{\beta (\frac{1}{T} - \frac{1}{ { {T_0}}})}}\tag1 RNTC=R0×eβ(T1−T01)(1)
由数据手册知,在T0=25℃时,R0=100KΩ,而β=3940K,因此式中有三个参数是已知的,而温度T与RNTC之间为指数关系,导致了上图的非线性结果。
二、基于补偿型对数运算的NTC热敏电阻线性化电路
若要使NTC的输出线性化,由于(1)式的指数关系存在,需要考虑对数运算电路对其进行处理。参考了集成型对数运算电路芯片ICL8048,如图所示:
这是一种补偿型的对数运算电路。R1为NTC热敏电阻,UREF为5V固定参考电压,两个运放使用±5V电源供电,Q1和Q2为集成型的共射级NPN对管。由于三极管在温度变化时,其PN结的反向饱和电流Is也会变化,因此采用两个三极管且是集成型对管来补偿Is的温度影响。设U2的同相输入端电压为Up,Q1、Q2发射结偏置电压分别为UBE1、UBE2,流经R5和Q1的电流为IREF,流经NTC的电流为INTC,则:
U p = U B E 2 − U B E 1 (2) { {U}_{p}}={ {U}_{BE2}}-{ {U}_{BE1}}\tag2 Up=UBE2−UBE1(2)
两个三极管的基极和集电极都短接在了一起,因此UBE=UCE。根据三极管的电流分配关系可知,IE=IB+IC,则有:
I E 1 = I B 1 + I C 1 = U R E F R N T C I E 2 = I B 2 + I C 2 = I R E F (3) \begin{align} & { {I}_{E1}}={ {I}_{B1}}+{ {I}_{C1}}=\frac{ { {U}_{REF}}}{ { {R}_{NTC}}} \\ & { {I}_{E2}}={ {I}_{B2}}+{ {I}_{C2}}={ {I}_{REF}} \\ \end{align}\tag3 IE1=IB1+IC1=RNTCUREFIE2=IB2+IC2=IREF(3)
IE是三极管发射结电流,其大小必然遵循PN结电压-电流之间的基本关系,即当发射结正偏时,基极(P区)与发射级(N区)的偏置电压为UBE,则有:
I E = I S ( e U B E U T − 1 ) (4) { {I}_{E}}&