【论文笔记】Reinforcement Learning for Solving the Vehicle Routing Problem

本文提出了一种端到端的强化学习方法,用于解决车辆路径问题(VRP),在有容量限制的情况下,该方法优于传统启发式算法和谷歌OR-Tools。通过简化指针网络,使用静态和动态元素的嵌入,并利用注意力机制,解决了输入变化带来的复杂性。在不同规模的VRP问题上,实验表明该方法具有较高的效率和稳定性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概述

本文主要使提出了一种用端到端的强化学习方法来解决VRP问题——指针网络的简化版可以有效的处理系统包含静态、动态两种元素。【由一个带有注意力机制的解码器构成,每个时间步,静态元素的嵌入RNN解码器的输入,RNN的输出和动态元素嵌入被送入注意力机制,形成一个可行的目的地,供选择。】

  • 优势:在有容量限制的VRP问题中,本文的方法比传统的启发式,甚至谷歌的OR-tools效果更好。

介绍

  • VRP:有一定容量的车,在城市中送货,在货物送完之前,必须回到固定起点(车厂)装货。
  • 目标:优化一条线路,最大化总里程或最小化平均服务时间
  • 现状:即使只有几百服务点的问题,也很难计算。
  • ==为什么不用指针网络?==VRP问题一旦访问一个节点之后,其实际需求就会变为0.

背景知识

  • sequence to seqence
  • attention mechanism
  • neural combinatorial optimization

方法

  • 输入: X = { x i , i = 1..... M } X=\{x^i,i=1.....M\} X={ xi,i=1.....M}
  • 条件: 允许输入的某些元素,在解码过程中发生变化。如车辆访问节点时,剩下节点的需求随时间变化;新客户的随自生到来的时间,改变需求。
  • 每个输入可以表示成 { x i t = ( s i , d t i , t = 0 , 1.... ) } \{x_i^t=(s^i,d_t^i,t=0,1....)\}
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值