次/超模 (supermodular/submodular)

次/超模 (supermodular/submodular)

定义

submodular function

Definition1: In mathemaics, a function f : R k → R f:R^k \rightarrow R f:RkR is submodular if

f ( x ↑ y ) + f ( x ↓ y ) ≤ f ( x ) + f ( y ) f(x\uparrow y)+f(x\downarrow y)\leq f(x)+f(y) f(xy)+f(xy)f(x)+f(y)

for all x , y ∈ R k x,y\in R^k x,yRk, where x ↑ y x\uparrow y xy denotes the componentwise maximum and x ↓ y x\downarrow y xy the componentwise minimun of x x x and y y y.

Definition2: If f f f is twice continuously differentiable, then submodularity is equibalent to the condition

∂ 2 f ∂ z i ∂ z j ≤ 0   for all   i ≠ j \frac{\partial^2 f}{\partial z_i \partial z_j}\leq 0 \ \ \text{for all} \ \ i\not=j zizj2f0  for all  i=j

submodular set function

Definition 1: A function f : 2 N → R f: 2^N\rightarrow R f:2NR is submodular if for any S , T ⊆ N S,T\subseteq N S,TN,

f ( S ∪ T ) + f ( S ∩ T ) ≤ f ( S ) + f ( T ) f(S\cup T)+f(S\cap T)\leq f(S)+f(T) f(ST)+f(ST)f(S)+f(T)

Definition 2: Submodularity can be alternatively defined by

f ( S ∪ { j } ) − f ( S ) ≥ f ( T ∪ { j } ) − f ( T ) f(S\cup \{j\})-f(S)\geq f(T\cup \{j\})-f(T) f(S{j})f(S)f(T{j})f(T)

for all S ⊆ T , j ∉ T S\subseteq T, j\notin T ST,j/T

性质

  • If f ( x ) f(x) f(x) is submodular, then − f ( x ) -f(x) f(x) is supermodular

  • a sum of submodular functions is a submodular function

  • 复合函数,Topik (1978)

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-WMH5UmqX-1671541140531)(file://E:\博士\新知识\2022-11-08-15-07-12-image.png?msec=1671535175375)]e.g., 第四行表示, is concave increasing function,  is submodular, then  is submodular.

    e.g., 第四行表示, f f f is concave increasing function, g g g is submodular, then f ∘ g = f ( g ( ⋅ ) ) f\circ g =f(g(\cdot)) fg=f(g()) is submodular.

Lovász Extension and Minimization of Submodular set Function

可以用于找到 submodular set function 的最小值

Definition: Givena set function f : 2 N → R f : 2^N\rightarrow R f:2NR, the Lovász Extension f L : [ 0 , 1 ] N → R f^L:[0,1]^N\rightarrow R fL:[0,1]NR is defined as f L ( x ) = ∑ j = 1 m λ j f ( S j ) f^L(x)=\sum_{j=1}^m\lambda_jf(S_j) fL(x)=j=1mλjf(Sj), where { S j } \{S_j\} {Sj} is the unique decreasing series of sets N = S 1 ⊃ S 2 . . . ⊃ S m = ∅ N=S_1\supset S_2 ... \supset S_m= \emptyset N=S1S2...Sm= such that x = ∑ j λ j 1 S j x=\sum_j \lambda_j \mathcal{1}_{S_j} x=jλj1Sj for ∑ j λ j = 1 , λ j ≥ 0 \sum_j \lambda_j=1, \lambda_j\geq 0 jλj=1,λj0

submodular set function 的 Lovász Extension 总是凸的。同样的, 如果某个 set function 的 Lovász Extension 是凸的,那么这个 set function 一定是 submodular。

[minimization of submodular set function]

If f : 2 N → R f:2^N\rightarrow R f:2NR is a submodular set functin, then the minimizer of its Lovász Extension is dimain [ 0 , 1 ] N [0,1]^N [0,1]N can be ontained at vertex points: min ⁡ x ∈ [ 0 , 1 ] N f L ( x ) = min ⁡ S ⊆ N f ( S ) \min_{x\in[0,1]^N} f^L(x)=\min_{S\subseteq N}f(S) minx[0,1]NfL(x)=minSNf(S)

Multilinear relaxation and Maximization of Submodular set Function

在很多情况下我们也想要最大化一个 submodular set function。例如,一个公司在有限预算下投放广告,人与人之间存在行为影响。公司需要决策将广告投放给哪些人能够最大化效用。将会互相影响的 consumers 团体作为一个 set,k 可以看作是公司在有限预算下能够投放的广告数。那么投放给哪些 consumers 能最大化效用,实际上就是找到 k k k 个 sets 能覆盖最多的 consumers。这个简化的模型称为 Max-k-Cover problem:

  • Given a set of sets { S j ⊆ N ∣ j ∈ A } \{S_j\subseteq N|j\in A\} {SjNjA}, find k k k sets which covers the most number of elements.

也可以给每个 consumer 的价值赋值。The Maximum Coverage Problem:

  • Given a set of S 1 , S 2 , . . . , S m ⊆ N S_1,S_2,...,S_m\subseteq N S1,S2,...,SmN. For each element i ∈ N i\in N iN, it has a value ν i ≥ 0 \nu_i\geq 0 νi0, and for each set S ⊆ N S\subseteq N SN the value function is defined as V ( S ) = ∑ i ∈ S ν i V(S)=\sum_{i\in S}\nu_i V(S)=iSνi. We need to select k k k sets { S j ∣ j ∈ A } \{S_j|j\in A\} {SjjA}, and to maximize the value V ( ∪ j ∈ A S j ) V(\cup_{j\in A}S_j) V(jASj).

这个问题的目标函数有次模性。(证明不是很难)由此衍生出来的还有 Assortment Optimization 问题

  • 假设有 N N N 个互相替代商品,要选择其中的一些商品做广告。广告数量(or 广告位)不多于 K K K 个。一些论文里会假设投放广告的利润 V ( S ) V(S) V(S) 是 sumodular,那么问题可以表示为 max ⁡   { V ( S ) : ∣ S ∣ ≤ K , S ⊆ N } \max\ \{V(S):|S|\leq K,S\subseteq N\} max {V(S):SK,SN}

以上有数量约束 (cardinality constrained) 的最大化submodular set function 的问题都是 NP hard。

对于最大化问题,可以引入 Multilinear relaxation

Definition: Given set function f : 2 N → R f: 2^N \rightarrow R f:2NR, we define its multilinear relaxiation by rounding a countinous point x ∈ [ 0 , 1 ] N x\in[0,1]^N x[0,1]N to { 0 , 1 } N \{0,1\}^N {0,1}N : F ( x ) = E [ f ( ξ ( x ) ) ] F(x)=E[f(\xi(x))] F(x)=E[f(ξ(x))], where ξ ( x ) ∈ R N \xi(x)\in R^N ξ(x)RN takes value ξ ( x ) i = 1 \xi(x)_i = 1 ξ(x)i=1 with probability x i x_i xi, and ξ ( x ) i = 0 \xi(x)_i=0 ξ(x)i=0 with probability 1 − x i 1-x_i 1xi independently

可以由 max ⁡ F ( x ) \max F(x) maxF(x) 得出近似结果。(有一些有用的算法,有空的话可以补)

Supermodular stochastic order (Muller and Scarsini 2000)

Definition: A random vector D 1 D_1 D1 is said to be smaller than the random vector D 2 D_2 D2 in the supermodular order, written D 1 ≤ s m D 2 D_1\leq_{sm}D_2 D1smD2, if E [ f ( D 1 ) ] ≤ E [ f ( D 2 ) ] E[f(D_1)]\leq E[f(D_2)] E[f(D1)]E[f(D2)] for all supermodular functon f f f such that the expectation exists.

根据定义,Muller and Scarsini 得到结论:

  • Let D 1 D_1 D1 and D 2 D_2 D2 be multivariate normal random vectors with parameters D 1 ∼ N ( μ , Σ 1 ) D_1\sim N(\mu,\Sigma_1) D1N(μ,Σ1) and D 2 ∼ N ( μ , Σ 2 ) D_2 \sim N(\mu,\Sigma_2) D2N(μ,Σ2), where Σ 1 , Σ 2 \Sigma_1,\Sigma_2 Σ1,Σ2 are covariance matrices such that σ i i 1 = σ i i 2 , σ i j 1 ≤ σ i j 2 \sigma_{ii}^1=\sigma_{ii}^2, \sigma_{ij}^1\leq\sigma_{ij}^2 σii1=σii2,σij1σij2. Then D 1 ≤ s m D 2 D_1\leq_{sm}D_2 D1smD2.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值