机器学习中的数学基础 DAY 1

本文探讨了机器学习中的数学基础,包括大O符号的概念,解释了方向导数、可微性及其关系,介绍了梯度、链式法则的重要性,并详细讨论了Hessian矩阵在判断函数极值点中的应用,最后提到了拉格朗日乘数法在约束优化问题中的作用。
摘要由CSDN通过智能技术生成

O(n) o(n)

order:阶,多次式阶,x^2+x+1 阶2

  • f(x)=O(g(x)):存在x0、M,使得x>=x0时,f(x)<=Mg(x)

    2x^2 = O(x^2),M=2,x0任意

    x^2+x+1 = O(x^2),M=2,x0=10

  • f(x)=o(g(x)):对于任意的ε,存在x0,使x>=x0时,f(x)<=εg(x)

    x=o(x^2)

    x^2+x+1 = o(x^3)

表示f(x)的阶比g(x)小

维基百科:

大O符号(英语:Big O notation),又称为渐进符号,是用于描述函数渐近行为的数学符号。更确切地说,它是用另一个(通常更简单的)函数来描述一个函数数量级的渐近上界。在数学中,它一般用来刻画被截断的无穷级数尤其是渐近级数的剩余项;在计算机科学中,它在分析算法复杂性的方面非常有用。

在这里插入图片描述

在这里插入图片描述

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值