文章目录
学习资料:
差分方程的建立及经典解法
1 离散系统的解析描述–建立差分方程
1.1 差分的定义
移位序列:设有序列 f ( k ) f(k) f(k), 则… , f ( k + 2 ) , f ( k + 1 ) , f ( k − 1 ) , f ( k − 2 ) f(k+2), f(k+1),f(k-1),f(k-2) f(k+2),f(k+1),f(k−1),f(k−2),… 等称为 f ( k ) f(k) f(k)的移位序列。
差分运算:
一阶前向差分定义:
一阶后向差分定义:
我们主要用后向差分
,简称为差分
。
差分的线性性质:
二阶差分定义:
m
m
m阶差分:
1.2 差分方程

差分方程:由未知输出序列项与输入序列项构成的方程。
差分方程的一般形式:
方程的阶数:未知变量最高序号与最低序号的差。
由 n n n阶差分方程描述的系统称为 n n n阶系统。
描述LTI离散系统的是线性常系数差分方程。
2 差分方程的模拟框图
2.1 基本部件单元
2.2 由框图建立差分方程

3 差分方程的经典解法
3.1 递推迭代
差分方程本质上是递推的代数方程
,若已知初始条件和激励,利用迭代法可求得其数值解。

3.2 经典法
与连续系统的微分方程经典解类似,差分方程的解由齐次解
y
h
(
k
)
y_h(k)
yh(k)和特解
y
p
(
k
)
y_p(k)
yp(k)两部分组成,即
3.3 齐次解的常用函数形式
3.4 特解的常用函数形式



代入初值 y ( 0 ) y(0) y(0)


4 零输入响应的定义和求解
4.1 零输入响应的定义
零输入响应:离散系统的激励为零,仅由系统的初始状态引起的响应,用
y
z
i
(
k
)
y_{zi}(k)
yzi(k)表示。
4.2 初始值的确定
用
y
(
−
1
)
,
y
(
−
2
)
,
…
,
y
(
−
n
)
y(-1) ,y(-2) ,… ,y(-n)
y(−1),y(−2),…,y(−n) 描述n阶系统的初始状态。(连续系统是给你各阶导数)
零状态响应:状态为零时输入产生的响应,加上 − l < 0 -l<0 −l<0还没有输入,故 y z s ( − l ) = 0 y_{zs}(-l)=0 yzs(−l)=0
4.3 求解步骤
(1)求特征方程的特征根;
(2)设定齐次解;
(3)直接代入初始状态
y
z
i
(
−
l
)
,
l
=
0
,
1
,
…
n
−
1
y_{zi}(-l), l = 0, 1, … n-1
yzi(−l),l=0,1,…n−1, 求待定系数。
5 零状态响应的定义和求解
5.1 零状态响应的定义和求解
零状态响应:系统的初始状态 y z s ( − l ) = 0 , l = 1 , 2 , … n y_{zs}(-l)=0, l =1, 2, … n yzs(−l)=0,l=1,2,…n,为零,仅由激励 f ( k ) f(k) f(k)引起的响应,用 y z s ( k ) y_{zs} (k) yzs(k)表示。
5.2 初始值的确定
由迭代法求出初始值 y z s ( j ) , j = 0 , 1 , … n − 1 y_{zs}(j), j= 0, 1, …n-1 yzs(j),j=0,1,…n−1
5.3 求解步骤
(1)设定齐次解;
(2)设定特解,代入方程求解;
(3)代入初始值,求待定系数。



t
>
0
t>0
t>0时
ε
(
t
)
=
1
\varepsilon(t)=1
ε(t)=1,激励可以看作
k
0
k^0
k0,查表的特解为一个常数
P
P
P,且
P
(
k
−
1
)
=
P
P(k-1)=P
P(k−1)=P,
P
(
k
−
2
)
=
P
P(k-2)=P
P(k−2)=P,故有
6
P
=
1
6P=1
6P=1
《工程信号与系统》作者:郭宝龙等
国家精品课程:信号与系统 ,中国大学MOOC,郭宝龙,朱娟娟