pattern的数学含义

pattern的数学含义

Mathematics is all about numbers. It involves the study of different patterns. There are different types of patterns, such as number patterns, image patterns, logic patterns, word patterns etc. Number patterns are very common in Mathematics. These are quite familiar to the students who study Maths frequently. Especially, number patterns are everywhere in Mathematics. Number patterns are all predictions. Few examples of numerical patterns are:

  • Even numbers pattern -: 2, 4, 6, 8, 10, 1, 14, 16, 18, …
  • Odd numbers pattern -: 3, 5, 7, 9, 11, 13, 15, 17, 19, …
  • Fibonacci numbers pattern -: 1, 1, 2, 3, 5, 8 ,13, 21, … and so on

Let us discuss the patterns in Maths with a few solved example problems. In this article, we are going to focus on various patterns.

1 Patterns in Maths

In Mathematics, the patterns are related to any type of event or object. If the set of numbers are related to each other in a specific rule, then the rule or manner is called a pattern. Sometimes, patterns are also known as a sequence. Patterns are finite or infinite in numbers.

For example, in a sequence 2,4,6,8,?. each number is increasing by sequence 2. So, the last number will be 8 + 2 = 10.

2 Number Patterns

A list of numbers that follow a certain sequence is known as patterns or number patterns. There are different types of number patterns:

  • Arithmetic Pattern
  • Geometric Pattern
  • Fibonacci Pattern

3 Rules for Patterns in Maths

To construct a pattern, we have to know about some rules. To know about the rule for any pattern, we have to understand the nature of the sequence and the difference between the two successive terms.

Finding Missing Term: Consider a pattern 1, 4, 9, 16, 25, ?. In this pattern, it is clear that every number is the square of their position number. The missing term takes place at n = 6 n = 6 n=6. So, if the missing is x n x_n xn, then x n = n 2 x_n = n^2 xn=n2. Here, n = 6 n = 6 n=6, then x n = ( 6 ) 2 = 36 x_n = (6)2 = 36 xn=(6)2=36.

Difference Rule: Sometimes, it is easy to find the difference between two successive terms. For example, consider 1, 5, 9, 13,……. In this type of pattern, first, we have to find the difference between two pairs of the sequence. After that, find the remaining elements of the pattern. In the given problem, the difference between the terms is 4, i.e.if we add 4 and 1, we get 5, and if we add 4 and 5, we get 9 and so on.

4 Types of Patterns

In Discrete Mathematics, we have three types of patterns as follows:*

  • Repeating – If the number pattern changes in the same value each time, then the pattern is called a repeating pattern. Example: 1, 2, 3, 4, 5, ……
  • Growing – If the numbers are present in the increasing form, then the pattern is known as a growing pattern. Example 34, 40, 46, 52, ……
  • Shirking – In the shirking pattern, the numbers are in decreasing form. Example: 42, 40, 38, 36 ….

经常在英文书中看到pattern这个词,我觉得pattern广义含义为:
一个集合,它的元素之间特定的规则就是pattern。

比如:
图像由像素集合组成,这些像素按照规则排列得到图像,这个规则就是一种图像模式(pattern)。

正弦信号由各个时间点的幅值组成,所得到的规则波形就是一种信号模式。

https://byjus.com/maths/patterns/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二进制人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值