问题描述
小明对数的研究比较热爱,一谈到数,脑子里就涌现出好多数的问题,今天,小明想考考你对素数的认识。
问题是这样的:一个十进制数,如果是素数,而且它的各位数字和也是素数,则称之为“美素数”,如29,本身是素数,而且2+9 = 11也是素数,所以它是美素数。
给定一个区间,你能计算出这个区间内有多少个美素数吗?
Input
第一行输入一个正整数T,表示总共有T组数据(T <= 10000)。
接下来共T行,每行输入两个整数L,R(1<= L <= R <= 1000000),表示区间的左值和右值。
Output
对于每组数据,先输出Case数,然后输出区间内美素数的个数(包括端点值L,R)。
每组数据占一行,具体输出格式参见样例。
Sample Input
3 1 100 2 2 3 19
Sample Output
Case #1: 14 Case #2: 1 Case #3: 4
解题思路
数据量较大,会超时,所以要先将数据进行一个预处理,先将所有的素数都找出来,然后在循环的过程中,若是美素数,则记录下来,将个数存入到一个数组里,最后在给定区间的时候,将对应的数相减即可。
代码
#include<stdio.h>
#include<algorithm>
using namespace std;
const int maxn=1e6+7;
bool isprime[maxn];
int a[maxn];
void sieve() //预处理
{
int i,j;
for(i=0;i<=maxn;i++)
{
isprime[i]=true;
}
isprime[0]=isprime[1]=false;
for(i=2;i<=maxn;i++)
{
if(isprime[i])
{
for(j=2*i;j<=maxn;j+=i)
{
isprime[j]=false;
}
}
}
}
int sum(int x)
{
int sum1=0;
while(x)
{
sum1+=x%10;
x=x/10;
}
return sum1;
}
int main()
{
sieve();
int t,i,l,r,flag;
int sum2=0;
for(i=1;i<=maxn;i++)
{
if(isprime[i]&&isprime[sum(i)])
{
sum2++; //若既是素数又是美素数,则个数增加1
}
a[i]=sum2; //将个数存入数组
}
scanf("%d",&t);
for(i=0;i<t;i++)
{
scanf("%d%d",&l,&r);
flag=a[r]-a[l-1]; //相减即为所求
printf("Case #%d: %d\n",i+1,flag);
}
return 0;
}