毕达哥拉斯三元组:有正整数三元组x,y,z,满足x^2+y^2=z^2,这样的三元组被称为毕达哥拉斯三元组。特殊的,若gcd(x,y,z)=1,那么这个毕达哥拉斯三元组是本原的。
题目
a<b<c,a^2+ b^2 = c^2,
例如:3^2 + 4^2 = 9 + 16 = 25 = 5^2.
已知存在并且只存在一个毕达哥拉斯三元组满足条件a + b + c = 1000。
求出该三元组中abc的乘积
代码
for a in range(1,333):
for b in range(a+1,500):
c=1000-a-b
if a*a + b*b == c*c:
sum = a*b*c
print(a,b,c)
print(sum)
结果
200 375 425
31875000