Longformer:一种适用于长文档处理的可扩展Transformer模型

今天给大家分享一篇文章,主题是关于一种专为长文档设计的全新Transformer模型——Longformer。相信很多朋友在处理自然语言处理(NLP)任务时都遇到过类似的难题:面对超长文本,传统模型往往需要将其拆分成多个短片段,既增加了复杂度,也可能丢失重要的上下文信息。那么,是否有一种方法能够直接处理长文本,同时保持计算效率?Longformer正是为了解决这一问题而诞生。接下来,让我们一起来了解它是如何通过创新的注意力机制以及强大的性能表现,突破传统Transformer的限制的!

老样子,我还是按照Paper的结构对这篇文章进行详细解析,感兴趣的可以自行阅读原文。

1. Abstract

基于Transformer的模型无法处理长序列,这是因为其自注意力机制的计算复杂度随着序列长度呈二次增长。为了解决这一限制,本文引入了Longformer,一种注意力机制,其计算复杂度随序列长度线性增长,从而能够轻松处理包含数千个token或更长的文档。Longformer的注意力机制可以直接替换标准的自注意力机制,并结合了局部窗口注意力和基于任务需求的全局注意力。基于此前关于长序列Transformer的研究,在字符级语言建模任务上对Longformer进行了评估,并在text8和enwik8数据集上取得了最先进的结果。与之前的大多数工作相比,本文对Longformer进行了预训练,并将其微调用于多种下游任务。经过预训练的Longformer在长文档任务上始终优于RoBERTa,并在WikiHop和TriviaQA数据集上创下了新的最先进成绩。最后,本文推出了Longformer-Encoder-Decoder (LED),这是支持长文档生成序列到序列任务的Longformer变体,并在arXiv摘要数据集上展示了其卓越的效果。

2. Introduction

Transformer(Vaswani 等,2017)在生成式语言建模(Dai 等,2019;Radford 等,2019)和判别式语言理解(Devlin 等,2019)等广泛的自然语言任务中取得了最先进的成果。这一成功部分归功于其自注意力机制,自注意力使网络能够从整个序列中捕获上下文信息。虽然这种机制非常强大,但自注意力的内存和计算需求随着序列长度的增长呈二次方增加,从而使得处理长序列变得不可行(或代价极高)。

为了解决这一限制,本文提出了 Longformer,一种经过修改的 Transformer 架构,其自注意力操作的计算复杂度随着序列长度线性增长,使其能够高效处理长文档(如图 1 所示)。这为长文档分类、问答(QA)和指代消解等自然语言任务提供了优势。在这些任务中,现有的方法通常会将较长的上下文划分或截短为更小的序列,以满足 BERT 风格的预训练模型通常的 512 个 token 限制。然而,这种划分可能会导致重要的跨片段信息丢失。为缓解这一问题,现有方法往往依赖于复杂的架构来处理这种信息交互。而本文提出的 Longformer 能够通过多层注意力机制构建整个上下文的表征,减少了对特定任务架构的依赖。

完整文章链接:Longformer:一种适用于长文档处理的可扩展Transformer模型

在进行图像处理时,高分辨率图像的编码面临着分辨率高、信息量大的挑战,这通常需要模型具备处理大量数据的能力。Multi-Scale Vision Longformer通过结合多尺度模型结构和视觉Longformer注意力机制,成功地提升了对高分辨率图像的编码性能。 参考资源链接:[多尺度视觉former:高分辨率图像编码的新Transformer架构](https://wenku.csdn.net/doc/5fyw1mw40e?spm=1055.2569.3001.10343) 首先,多尺度模型结构设计允许该架构同时从多个不同的尺度捕获图像特征。这种设计原理金字塔结构类似,可以在不同的尺度上提取图像的粗粒度和细粒度特征,进而获得更全面的视觉信息。这种多尺度的信息提取对于理解高分辨率图像中的复杂场景至关重要,因为它能够同时考虑整体布局和局部细节。 其次,视觉Longformer注意力机制是Multi-Scale Vision Longformer提升性能的关键因素之一。传统的自注意力机制相比,视觉Longformer注意力机制具有线性的时间复杂度,这使得它能够有效处理更多输入像素而不显著增加计算负担。通过这种方式,Multi-Scale Vision Longformer能够在保持计算效率的同时,更准确地捕捉到距离依赖关系,这对于理解和编码高分辨率图像中的细粒度模式尤为关键。 综合这两个创新点,Multi-Scale Vision Longformer能够更加高效和准确地处理高分辨率图像。它的多尺度模型结构能够提取丰富上下文信息,而视觉Longformer注意力机制确保了在高维数据处理上的高效率和高精度。这种结合不仅克服了传统Vision Transformer处理高分辨率数据时的效率和性能瓶颈,也为我们提供了在计算机视觉领域中处理更复杂视觉任务的新方法和新视角。 参考资源链接:[多尺度视觉former:高分辨率图像编码的新Transformer架构](https://wenku.csdn.net/doc/5fyw1mw40e?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值