Halloween Costumes

题目链接
在这里插入图片描述
思路
d p [ i ] [ j ] 表 示 从 第 i 场 p a r t y 到 第 j 场 p a r t y 所 需 穿 的 最 少 服 装 dp[i][j]表示从第i场party到第j场party所需穿的最少服装 dp[i][j]ipartyjparty穿
按 照 区 间 d p 一 般 做 法 , 我 们 通 常 枚 举 长 度 为 2 、 3 、 4 的 区 间 找 找 规 律 按照区间dp一般做法,我们通常枚举长度为2、3、4的区间找找规律 dp234
不 难 猜 想 , 如 果 我 们 知 道 d p [ i ] [ j ] , 那 我 们 如 何 求 d p [ i ] [ j + 1 ] 的 值 呢 ? 不难猜想,如果我们知道dp[i][j],那我们如何求dp[i][j +1]的值呢? dp[i][j]dp[i][j+1]
显 然 可 以 知 道 , d p [ i ] [ j + 1 ] 只 是 比 d p [ i ] [ j ] 枚 举 的 区 间 多 了 1 个 p a r t y 显然可以知道,dp[i][j+1]只是比dp[i][j]枚举的区间多了1个party dp[i][j+1]dp[i][j]1party
那 对 答 案 d p [ i ] [ j + 1 ] 的 贡 献 最 多 是 1 , 所 以 d p [ i ] [ j + 1 ] 的 答 案 怎 么 确 定 呢 ? 那对答案dp[i][j+1]的贡献最多是1,所以dp[i][j+1]的答案怎么确定呢? dp[i][j+1]1dp[i][j+1]
枚 举 区 间 分 割 点 , 设 为 k 枚举区间分割点,设为k k
如 果 a [ k ] = = a [ j + 1 ] , 则 表 示 [ i , k ] 举 行 第 k 个 p a r t y 的 时 候 穿 的 衣 服 与 [ k + 1 , j + 1 ] 举 行 第 j + 1 个 p a r t y 的 相 同 如果a[k] == a[j+1],则表示[i,k]举行第k个party的时候穿的衣服与[k+1,j+1]举行第j+1个party的相同 a[k]==a[j+1][i,k]kparty穿[k+1,j+1]j+1party
那 我 们 就 可 以 确 定 d p [ i ] [ j + 1 ] = m i n ( d p [ i ] [ j + 1 ] , d p [ i ] [ k ] + d p [ k + 1 ] [ j + 1 ] − 1 ) 那我们就可以确定dp[i][j + 1]=min(dp[i][j+1], dp[i][k] + dp[k+1][j+1]-1) dp[i][j+1]=min(dp[i][j+1],dp[i][k]+dp[k+1][j+1]1)
否 则 , d p [ i ] [ j + 1 ] = m i n ( d p [ i ] [ j + 1 ] , d p [ i ] [ k ] + d p [ k + 1 ] [ j + 1 ] ) 否则,dp[i][j + 1]=min(dp[i][j+1], dp[i][k] + dp[k+1][j+1]) dp[i][j+1]=min(dp[i][j+1],dp[i][k]+dp[k+1][j+1])

AC代码

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
ll dp[105][105];
ll a[105];
int main(){
    int t;
    scanf("%d", &t);
    int num = 0;
    while(t--){
	num++;
	int n;
	scanf("%d", &n);
	for(int i = 1; i <= n; i++) scanf("%lld", &a[i]);
	for(int i = 1; i <= n; i++){
		for(int j = i; j <= n; j++){
			if(j == i) dp[i][j] = 1;
			else dp[i][j] = 10000;
		}
	}
	for(int len = 2; len <= n; len++){
		for(int i = 1; i <= n; i++){
			int j = len + i - 1;
			if(j > n) break;
			for(int k = i; k < j; k++){
				if(a[j] == a[k]) dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j] - 1);
				else dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j]);
			}
		}
	}
	printf("Case %d: %lld\n", num, dp[1][n]);
    }
    return 0;
}

思考
有 时 候 这 些 d p 转 移 方 程 式 很 难 想 到 怎 么 证 明 , 但 是 如 果 我 们 自 己 类 推 找 规 律 的 话 。 有时候这些dp转移方程式很难想到怎么证明,但是如果我们自己类推找规律的话。 dp
直 接 莽 一 发 , 说 不 定 就 对 了 直接莽一发,说不定就对了

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值