使用sklearn实现随机森林分类和回归

性感官方,在线文档

form sklearn.ensemble import RandomForestClassifier as rfc
form sklearn.ensemble import RandomForestRegressor as rfr

参数

RFC需要调参可以分为两部分,一部分是bagging参数,另外一部分是决策树的参数。
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
n_estimators 基学习器的数量
n_jobs cpu核心数
oob_score 是否使用袋外样本进行评估
bootstrap True 不适用袋外样本进行建模
class_weight 少数民族万岁
random_state random_state
verbose Controls the verbosity when fitting and predicting.
warm_start:略
max_samples 当bootstrap is True,控制样本比例
ccp_alpha 不太懂

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
criterion ‘gini’ or ‘entropy’(分类)‘mae’,‘mse’(回归)
max_depth 单树的最大深度
min_samples_split 小于该值就不分叉了
min_samples_leaf 不太懂
max_features ‘auto’,‘log2’,‘sqrt’,int ,float
min_weight_fraction_leaf不太懂
max_leaf_nodes限制叶子数量
min_impurity_decrease 垃圾分叉淘汰
min_impurity_split 预剪枝要求

属性

base_estimator:基学习器
n_features_:使用的特征数量
estimators_:所有的基学习器list
oob_score_:带外数据评估分数

方法

.fit 训练
predict 预测
predict_proba预测,返回概率
predict_log_proba 预测,返回log概率
score 返回准确率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值